Historical background and current developments for mapping burned area from satellite Earth observation

Emilio Chuvieco⁎, Florent Mouillotb, Guido R. van der Werfc, Jesús San Migueld, Mihai Tanasea, Nikos Koutsiasa, Mariano Garcíaa, Marta Yebraf, Marc Padillag, Ioannis Gitash, Angelika Heilh, Todd J. Hawbakerj, Louis Gigliok

a Environmental Remote Sensing Research Group, Department of Geology, Geography and the Environment, Universidad de Alcalá, Calle Colegios 2, Alcalá de Henares 28801, Spain
bIRD, UMR CEFE 5175, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Université Paul-Valery Montpellier, Ecole pratique des hautes études (EHPJE), Institut de Recherche pour le Développement (IRD), 1919 route de Mende, 34293 Montpellier cedex 5, France
cDepartment of Earth Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
dEuropean Commission Joint Research Centre, Directorate E – Space, Security and Migration, Via Fermi 2749, Ispra I-21027, Italy
eDepartment of Environmental and Natural Resources Management, University of Patras, G. Seferi 2, Agrinio GR-30100, Greece
fFenner School of Environment and Society, The Australian National University, Acton, ACT, Australia, and Bushfire, Natural Hazards Cooperative Research Centre, Melbourne, Australia
gCentre for Landscape & Climate Research, Leicester Institute for Space and Earth Observation, School of Geography, University of Leicester, Leicester LE1 7RH, United Kingdom
hLaboratory of Forest Management and Remote Sensing, School of Forestry and Natural Environment, Aristotle University of Thessaloniki, Moschounta 59, Thessaloniki GR-54124, Greece
iMax Planck Institute for Meteorology, Environmental Modeling, Hamburg, Germany
jU.S. Geological Survey, Geosciences and Environmental Change Science Center, Denver, CO 80225, USA
kDepartment of Geographical Sciences, University of Maryland, College Park, MD, USA

ARTICLE INFO

Keywords: Burned area Fire Fire impacts Lidar Radar Climate change

ABSTRACT

Fire has a diverse range of impacts on Earth’s physical and social systems. Accurate and up to date information on areas affected by fire is critical to better understand drivers of fire activity, as well as its relevance for biogeochemical cycles, climate, air quality, and to aid fire management. Mapping burned areas was traditionally done from field sketches. With the launch of the first Earth observation satellites, remote sensing quickly became a more practical alternative to detect burned areas, as they provide timely regional and global coverage of fire occurrence. This review paper explores the physical basis to detect burned area from satellite observations, describes the historical trends of using satellite sensors to monitor burned areas, summarizes the most recent approaches to map burned areas and evaluates the existing burned area products (both at global and regional scales). Finally, it identifies potential future opportunities to further improve burned area detection from Earth observation satellites.

1. Introduction: impacts of biomass burning

Fire is a natural disturbance agent in many ecosystems, helping to promote diversity and natural regeneration (Kelly and Brotons, 2017). However, fire has also been used since the beginning of human history as a tool for hunting, land management and deforestation (Pyne, 1995). Fire cycles were historically associated with climate oscillations, particularly with temperature increases in boreal and temperate regions (Marlon et al., 2013), and with multimillennial-scale changes in precipitation amount and timing in tropical regions (Daniau et al., 2013).

However, in the last centuries, human factors have taken predominance, either as a source of ignition or as a force of fire suppression, especially in developed countries. These alterations of natural fire regimes can have negative impacts on biodiversity, forest structure and resilience, particularly in equatorial regions where evergreen forests have become vulnerable to fire (Gilroy et al., 2014; Lewis et al., 2015).

Biomass burning is widely recognized as one of the critical factors affecting atmospheric chemistry, as a significant share of aerosols and greenhouse gas emissions are produced from burning (Knorr et al., 2016; van der Werf et al., 2010). Fires also affect carbon budgets...
of satellite imagery for BA detection and mapping has been addressed in many peer-reviewed journals, book chapters, and conference proceedings. This review paper aims to evaluate the historical developments of satellite-based studies on BA estimation, the different sensors and methods that have been used, and the strengths and limitations of current available BA products, with particular emphasis on global datasets. We focus on BA mapping, assuming a binary detection (burned/unburned). Analysis of fire effects or regeneration after fire has been covered elsewhere (Chu and Guo, 2014; Storey et al., 2016; Veraverbeke and Hook, 2013).

This review is organized around several sections. First, the requirements of BA information by different user communities is covered, with particular emphasis on atmospheric emissions and dynamic global vegetation models. Then a brief section describes the spectral characteristics of fire-affected areas, which are the basis of retrieving BA information from satellite sensors. Then, a historical analysis presents the trends in BA mapping since the early 1980s until the beginning of this century. Next, the current state of the art and expected evolution are appraised, distinguishing in both cases sensors and methodological approaches. The last section briefly summarizes existing BA products, their main strengths and limitations and provides an overview of the main challenges ahead for retrieving BA from satellite imagery. A list of acronyms is included at the annex to help readers with the different products, missions and agencies involved.

2. Needs and uses of burned area information

Most global BA products initially aimed at fulfilling the needs of climate modelers, as fire disturbance is considered one of the Essential Climate Variables (ECVs, 2016), but increasing accuracy and systematic delivery at global scale lead to civil protection services, environmental and forest protection services, insurance companies and health planners, among other communities to increasingly use these data as a surrogate to the lack of local information as reviewed in Mouillot et al. (2014). The need of BA information and effects of forest fires at the global scale are also relevant to address international initiatives and commitments related to fire emissions, such as the Kyoto Protocol and the agreements at the United National Conference on Climate Change in Paris (COP21), or the United Nations Sendai Framework on Disaster Risk Reduction 2015–2030, through the monitoring of progress in the Sustainable Development Goals (SDGs), for which global information on fire effects is a key variable. These communities may have different needs and therefore, the BA products need to be optimized for a wide range of end-user requirements.

The emergence of new global satellite records catalyzed substantial progress in fire emissions estimation over the past three decades. The first global estimates of biomass burning emissions relied on biome-aggregated best-guess values of the average annual area burned, combined with biome-averaged estimates of biomass density and burning efficiency (Seiler and Crutzen, 1980). Subsequent efforts used vegetation and land use maps to spatially disaggregate the annual average emission estimates to 5’ (Müller, 1992; Hao and Liu, 1994) and later to 1’ (Lobert et al., 1999) spatial resolution. They were based on national fire statistics and other proxies (Mouillot et al., 2006). By the early 2000s, the integration of satellite observations allowed for a better representation of the spatial and temporal variability of fire emissions (Duncan et al., 2003; Ito and Penner, 2004) that relied on the first available global BA maps computed from satellite information of post-fire reflectance: the GBA2000 product (Grégoire et al., 2003) and GLOBSCHAR (Simon et al., 2004). The first version of the Global Fire Emission Database (GFED) then provided 1°×1° gridded monthly fire emissions from 1997 to 2002 (van der Werf et al., 2003, 2004). GFED uses gridded 0.5° or 0.25° BA data in a biogeochemical model where available biomass to burn in vegetation and soil is determined by coarse scale land cover types, soil types and their corresponding water holding capacity and climate (CASA). However, bias may be introduced when...
Fire impacts on vegetation are not binary (burned/unburned), but rather they have a wide variety of conditions, depending on the type of fire, fire behavior, and the time between fire extinction and image acquisition. Therefore, the post-fire signal as well as its changes from pre-fire reflectance, temperature or backscatter may be very diverse. Thus, the analysis of both post-fire and temporal changes in spectral behavior provides relevant information to understand fire impacts, while monitoring post-fire changes throughout time helps to understand regeneration patterns.

The type of fire relates to the vegetation strata affected by the burning: whether fire impacts the surface fuels and understory component of the forest cover (surface fire), the canopy (crown fire), or even just the in-depth soil layer (underground fire). Wherever the tree cover is dense, surface fires are difficult to detect from remote sensing measurements (Pereira et al., 2004). This is particularly challenging for tropical fires, which tend to have moderate severity but important impacts when they are recurrent (Cochrane et al., 1999). Crown fires are easier to detect, while underground fires may only be detected by thermal sensors, as vegetation reflectance changes after the root system is affected by the intense heat (Fig. 1).

Fire behavior affects the heat released and the propagation speed of
the fire, and therefore the actual severity of fire impacts. Combustion completeness mainly depends on wind speed, terrain slope, pre-fire biomass load and structure, and water content (Fearnside et al., 2001; van Leeuwen et al., 2014; Ward et al., 1996; Kane et al., 2015). The more intense the fire, the more complete the combustion, and the more important the spectral contribution of ash and charcoal compared to green vegetation. In addition, the type of combustion (smoldering or flaming) impacts the proportion of ash over charcoal in the post-fire signal.

Finally, the temporal difference between fire extinction and image acquisition is critical for detecting BA. This is especially true for tropical regions, which tend to have high cloud cover and rapid vegetation regeneration (Sader et al., 1990). On the contrary, in boreal forests the post-fire signal remains strong for long periods, even several years after burning (Kasischke, 2000). In recent burns, the most important spectral components will be ash and charcoal on the soil layer, and a mixture of green and brown leaves in the surface and canopy vegetation, depending on fire intensity and combustion efficiency. For older burns, post-fire regeneration and the effects of rainfall and wind will reduce the ash and charcoal signal, and only a loss of biomass will make it possible to discriminate BA from unaffected areas (Chuvieco et al., 2006). A brief review on the characteristics of spectral changes caused by fire in different spectral domains follows.

3.1. Solar domain

The solar domain includes the spectral region where reflected solar radiation dominates the signal detected by remote sensing systems: from 0.4 to 2.5 μm. It includes the visible light (blue, green and red: BGR), the near infrared (NIR) and the short-wave infrared (SWIR) bands. Reflectance in these bands is determined by solar energy reflecting from different land surfaces and covers, which is related to their chemical (e.g., pigments, water, dry matter) and physical (e.g., roughness and geometrical arrangement) characteristics, as well as the observation and illumination angles (e.g., bidirectional reflectance distribution function (BRDF) effects). Atmospheric and terrain effects can also affect the detected signal.

Several authors have shown that the NIR and SWIR spectral regions are especially sensitive to fire effects (López García and Caselles, 1991; Oliva et al., 2011; Pereira et al., 1999; Pleniou and Koutsias, 2013; Trigg and Flasse, 2001). Fire causes both a reduction in leaf area index (when leaves are burned) and/or leaf pigment reduction and desiccation (when leaves are scorched). The former effects are mostly observed as a strong decrease of the NIR reflectance after burning (Chuvieco and Congalton, 1988; López García and Caselles, 1991; Silva et al., 2004), while the dryness results in an increase in the SWIR reflectance (Cecatto et al., 2001; Chuvieco et al., 2006; Trigg and Flasse, 2000). Little sensitivity to fire effects has been detected in the visible bands (Fuller and Rouse, 1979; Tanaka et al., 1983), although some studies found them useful to monitor post-fire regeneration, particularly in areas with bright soils (Siljeström and Moreno, 1995).

The decreasing values in NIR reflectance were used in a pioneer study of Hall et al. (1980) to estimate burn severities in a temperate forest. Several authors found that charcoal reflectance in the NIR band was the lowest of all cover types, except when water was present (Chuvieco and Congalton, 1988; Tanaka et al., 1983). The persistence of this post-fire signal contrast is very short in tropical ecosystems (1–3 weeks) (Trigg and Flasse, 2000), while in boreal and temperate regions it may last up to several years after fire (Kasischke and French, 1995).

The increase of SWIR reflectance after fires was first observed in Mediterranean forests (Chuvieco and Congalton, 1988; López García and Caselles, 1991), and was later confirmed in savanna ecosystems, although in these regions the longer SWIR wavelengths (2–2.2 μm) were more sensitive than the shorter SWIR wavelengths (1.4–1.6 μm) (Eva and Lambin, 1998; Trigg and Flasse, 2000). This was also observed in temperate ecosystems (van Wagtendonk et al., 2004; Veraverbeke et al., 2011). In actively burning areas, the most sensitive band to radiant emittance is the middle infrared band (MIR: 3–8 μm), although the SWIR radiance also greatly increases when fires are active, which makes it possible to use medium resolution sensors (10–80 m), for active fire detection (Chuvieco and Congalton, 1988), such as Landsat Operational Land Imager (OLI) or Sentinel-2 Multispectral Instrument (MSI) (Schoeber et al., 2016).

The sharp decrease in the NIR reflectance and moderate increase in the SWIR reflectance has been used to generate different spectral indices for detecting burned areas and/or burn severities. Initial efforts were based on the normalized difference vegetation index (NDVI) which was used by Jakubauskas et al. (1990) to estimate three levels of burn severity. Later studies found little sensitivity of NDVI to discriminate burned and unburned areas, particularly in tropical ecosystems (Pereira, 1999). As an alternative to NDVI, several non-linear spectral indices based on the NIR-R space were proposed for BA discrimination, such as the global environmental monitoring index (GEMI: Pinty and Verstraete, 1992), that worked well in tropical ecosystems (Barbosa et al., 1999a; Pereira, 1999), or the burned area index (BAI: Chuvieco et al., 2002; Martín and Chuvieco, 1998). However, spectral indices combining the NIR-SWIR bands are more...
effective for BA discrimination than those based on the NIR-R bands. The normalized ratio of the NIR and SWIR bands was first proposed by López García and Caselles (1991) and later named the “normalized burned ratio” (NBR: Key and Benson, 1999). The NBR and the multi-temporal versions of this index (dNBR, for instance) have been widely used in burn severity estimation (Brewer et al., 2005; Eidenshink et al., 2007; French et al., 2008; Jin et al., 2012; Veraverbeke and Hook, 2013), forest disturbance detection (Wulder et al., 2009); and changes in forest attributes such as biomass (Pflugmacher et al., 2012). Wilson and Sader (2002) proposed the normalized difference moisture index (NDMI) by replacing Landsat Thematic Mapper (TM) band 7 (2.09–2.35 μm) in the NBR with band 5 (1.55–1.75 μm). It produced generally similar results, and the two indices have considerable correlation. Other indices using the NIR and SWIR bands for burned detection are the mid-infrared burn index (MIRBI: Trigg and Flasse, 2001) or the modified burned area index (BAIM: Martín et al., 2006; Quintano et al., 2011). The most recent version of the NASA BA product is also based on a NIR-SWIR detection index (Giglio et al., 2018).

3.2. Middle infrared and thermal domain

The middle infrared and thermal domain includes the spectral region where Earth outgoing radiation dominates the signal detected by remote sensing systems: from 2.5 to 14 μm. It includes the middle infrared (MIR: 2.5–8 μm) and thermal infrared (TIR: 8–14 μm) bands. For this band, the detected signal is related to how different surfaces emit energy, which is mainly related to their temperature and emissivity. As in the solar domain, the signal is also affected by atmospheric transmittance.

The MIR has been extensively used to detect active fires which have much higher emissivity than the non-burning background. This was clearly stated in the late 1980s after pioneering studies from the National Oceanographic and Atmospheric Administration (NOAA) (Matson et al., 1984). Later in the 1990s, the contrast in the MIR and TIR radiances between active fires and the background made it possible to create the first global fire products based on Advanced Very High-Resolution Radiometer (AVHRR) images (Abern et al., 2001; Dwyer et al., 2000a).

In terms of BA, the MIR channel has not been widely used, except for a few attempts to extract the reflective component of the MIR radiance and use it in combination with other optical bands. This was the basis of the GEMI3 index, proposed by Pereira et al. (1999) for detecting BA in AVHRR images. A similar index was used to detect burned pixels in AVHRR Pathfinder images (Carmona-Moreno et al., 2005) and to map forest fires in Greece from AVHRR high-resolution picture transmission images (Vafeidis and Drake, 2005). An optimized version of the MIR/NIR ratio was developed by Libonati et al. (2011) over the Brazilian cerrado.

The thermal contrast between burned and unburned areas was explored by Asrar et al. (1988) and López García and Caselles (1991) to map recent forest fires. They found a significant increase in temperature (5–6°C) for recent burns in temperate forest. This thermal difference vanishes rapidly as vegetation regeneration proceeds. Hope and McDowell (1992) used a combination of surface temperature and vegetation indices to discriminate burned and unburned grasslands. Cahoon et al. (1994) used thermal data for classifying BA from AVHRR images. Goodwin and Collett (2014) used Landsat TM thermal channels along with several spectral indices to discriminate savanna fires in Australia. Finally, Hawbaker et al. (2017) found the Landsat thermal band to be more important than other Landsat bands and spectral indices for detecting BA across the conterminous US.

3.3. Microwave domain

The microwave domain (1 mm–1 m) is generally independent from atmospheric effects. It is commonly sensed by active systems, as the natural emittance in these wavelengths is quite weak. Synthetic aperture radar (SAR) systems have the capacity to provide data day and night in this spectral region by emitting microwave pulses and recording the radiation scattered back (i.e. backscatter) from the surface (Lewis and Henderson, 1999). Modern SAR systems can measure both, the backscatter coefficient, related to target scattering properties, and the scattering phase, related to the distance between the sensor and the target. Through interferometric SAR (InSAR) processing, the elevation may be computed using the difference in phase between image pairs. As a byproduct, the interferometric coherence (or coherence) is computed. The coherence provides a means to estimate the correlation between the backscattered signal from a given target seen under two slightly different acquisition geometries and offers additional information on scene properties. Lastly, the availability of fully polarized (VV, VH, VH, and HV polarizations) datasets allows for a complete description of the scattering process with polarimetric target decomposition techniques being designed to enhance or suppress contributions from specific scattering mechanisms thus allowing for improved retrieval of the biophysical characteristics of interest. The use of SAR-based techniques provides distinct advantages over other sensor types including sensitivity to vegetation structure and frequent cloud-free acquisitions.

Different wavelengths such as X-, C-, and L-bands (i.e., 2.4–3.75, 3.75–7.5, and 15–30 cm, respectively) have been used in vegetation related studies as radar sensitivity to vegetation characteristics is wavelength and polarization dependent (Dobson et al., 1992; Le Toan et al., 1992; Rignot et al., 1994). Stronger relationships between radar backscatter and vegetation structure were generally found for longer wavelengths and cross-polarized (HV and VH polarizations) channels when compared to shorter wavelengths and co-polarized (HH and VV polarizations) channels (Pulliainen et al., 1994; Sandberg et al., 2011; Tanase et al., 2014; Tanase et al., 2010a). Fires induce variations of the backscatter coefficient that mostly depend on vegetation structure and moisture, but is also influenced by soil moisture (Kasischke et al., 2007). Combustion reduces the number of vegetation scattering elements potentially reducing the backscatter coefficient. However, combustion may also increase scattering from the ground due to reduced signal attenuation and the increased effects of soil surface properties (Kalogirou et al., 2014; Tanase et al., 2010b). Such contrasting effects may generate a wide range of backscatter behavior depending on the interplay between the SAR sensor characteristics, fire impact, and meteorological conditions (Bourgeau-Chavez et al., 2002; Huang and Siegert, 2006; Imperatore et al., 2017; Kasischke et al., 1994; Lohberger et al., 2018; Polychronaki et al., 2013; Ruecker and Siegert, 2000; Tanase et al., 2010b).

4. Historical approaches to BA mapping

The application of satellite images to BA mapping has a long history in remote sensing studies starting in the early 1970s and 1980s and it is still an active research topic employing advanced techniques that integrate geo-statistics, object oriented and machine learning methods. During this period of more than four decades, a wide range of techniques and algorithms have been developed and applied in BA mapping. A brief description of sensors and techniques used in those first decades (1980–2000) follows.

4.1. Sensors for early mapping of BA

The first BA products derived from satellite data relied on medium resolution sensors, mainly Landsat multispectral scanner (MSS) and, after 1982, TM images. Pioneer works were presented at technical conferences or in peer-reviewed journals (Hitchcock and Hoffer, 1974; Hall et al., 1980; Isaacson et al., 1982). These studies emphasized the spectral change associated with fire impacts, particularly in the NIR. The availability of TM images with SWIR and TIR bands increased the potential of using satellite data for BA retrieval. Classification methods
were applied to detecting burned pixels with satisfactory results (Chuvieco and Congalton, 1988; Milne, 1986; Smith and Woodgate, 1985; Tanaka et al., 1983). The earliest attempts to detect levels of damage were also introduced in the early 1980s (Hall et al., 1980), as well as early proposals to use SWIR and TIR radiances for active fire detection (Ambrosia and Brass, 1988; Chuvieco and Congalton, 1988). Spectral indices to emphasize the BA signal over the unburned surroundings from TM images were also suggested in the early 1990s (Jakubauskas et al., 1990; López García and Caselles, 1991). Later that decade, the use of Landsat TM images for estimating fire severity was first proposed (White et al., 1996). A few papers were also published on mapping BA and active fires from visual analysis of spaceborne camera photographs (Furyaev, 1985; Furyaev et al., 1985; Helfert and Lulla, 1990).

Other medium resolution sensors used in BA mapping were the Haute Résolution Visible (HRV) sensor, on board the Systeme Probatoire d’Observation de la Terre (SPOT) satellite since 1986, which provided good results in local studies (Eastwood et al., 1998), and the wide field sensor (WIFS) – linear imaging and self-scanning sensor (LISS), onboard the Indian Remote Sensing (IRS) satellite (Vázquez et al., 2001). Radar studies were also published in the 1990s, based mostly on European Remote Sensing (ERS) acquisitions (Bourgeau-Chavez et al., 1997; Kasischke et al., 1992; Landry et al., 1995).

Coarse resolution sensors were mainly used to analyze fire activity over large regions. A pioneering work was published by Brazilian scientists on the impacts of fire in the Amazonian region based on AVHRR images (Setzer and Pereira, 1991). Almost simultaneously, several papers were published from Canadian, US and Russian researchers on fire effects in the boreal forest also using AVHRR (Cahoon et al., 1992; Gutman et al., 1995; Kasischke et al., 1993). In the same decade, AVHRR was used to map savanna fires in Africa (Barbosa et al., 1999b; Langnas, 1992), Brazil (Pereira and Setzer, 1993) and Mediterranean forest (Chuvieco and Martin, 1994a; Martin and Chuvieco, 1993; Caetano et al., 1996). AVHRR-based studies were also developed to generate active fire information in the mid-1980s (Flannigan and Vonder Haar, 1986; Matson and Holben, 1987; Muirhead and Cracknell, 1985), and later on were the basis of the first global fire product, the world fire web, which mapped active fires and it was operational from 1992 to 1993 (Dwyer et al., 2000b; Stroppiana et al., 2000).

Further developments tried to obtain global BA products from AVHRR images. Since the full resolution data (approximately 1.21 km² at nadir) of this sensor was not centrally archived, these global scale projects used degraded versions of AVHRR images. The most common were the Pathfinder 8 km Land (PAL) used to obtain a global analysis of spatial and temporal patterns of fire occurrence (Carmona-Moreno et al., 2005; Riaño et al., 2007), and more recently the Land Long Term Data Record (LTDR) with 5 km pixel size (Moreno Ruiz et al., 2014; Moreno Ruiz et al., 2012).

Other coarse resolution sensors used in BA mapping were the Along Track Scanning Radiometer (ATSR), VEGETATION and those in geostationary satellites. The ATSR on board the European Remote Sensing (ERS-1 and 2) satellites since 1991 was first used to map African BA (Eva and Lambin, 1998), and afterwards to generate one of the first global BA products, the European Space Agency’s (ESA GLOBSAR) in the early 2000s (Simon et al., 2004). The VEGETATION instrument (VGT), onboard the SPOT satellite since 1998, was first used to map BA in Canada (Eastwood et al., 1998; Fraser et al., 2004) and later on served to generate the global burned area 2000 product (GBA2000; Tansey et al., 2004a). Natural Resources Canada implemented two national forest fire management information systems, namely the Canadian Wildland Fire Information System (CWIFS) and the fire monitoring, mapping and modeling system (Fire M3) (Lee et al., 2002). Fire M3 was designed for monitoring daily fire activity for the production of fire maps, fire impact modeling and the dissemination of the generated information. Fire M3 used AVHRR and VGT data to map burned areas, which were calibrated and verified by medium- to high-resolution imagery such as Landsat TM and SPOT-HRV. A few studies were also developed from images of geostationary satellites such as the Geostationary Operational Environmental Satellite (GOES) (Prins and Menzel, 1992; Prins and Menzel, 1994) and Meteosat (Boschetti et al., 2003), taking advantage of their high temporal frequency (< 30 min).

4.2. Early BA mapping methods

For the methods developed and applied in BA mapping, Koutsias et al. (1999) proposed a classification scheme that identified three general groups depending first on whether multi-temporal or single date satellite images were employed, second on whether the output was a direct estimate of BA or an intermediate enhanced product, and third on the type of classification methods. In addition to digital interpretation, the first BA studies also used visual analysis, profiting from the ability of the interpreter to consider very subtle color gradations as well as texture and contextual information. For instance, Chuvieco and Congalton (1988) used visual analysis of Landsat TM images to create reference fire perimeters to validate supervised maximum likelihood classification of a Mediterranean large fire. Visual analysis was also used to delineate fire patches from radar images (Bourgeau-Chavez et al., 1997; Bourgeau-Chavez et al., 2002; Siegert and Ruecker, 2000).

Multi-temporal approaches have the advantage over single post-fire images of reducing commission errors caused by dark soils, water bodies, topographic shades, or cloud shadows. Therefore, the BA detection utilized information not only from spectral but also from temporal changes between the pre- and post-fire satellite imagery. However, multi-temporal approaches can also have several difficulties related to radiometric and geometric adjustments, as well as the discrimination of fire-caused changes from other types of temporal change, such as seasonal floods, harvesting or deforestation.

The second group of the techniques reduces the dimensionality of the original images. This was the case of principal component analysis or vegetation indices, which aimed to improve spectral separability of burned versus other covers. Single channel density slicing, and thresholding of spectral vegetation indices were also very common techniques for BA discrimination, both with SAR imagery (Kasischke et al., 1994) and AVHRR data (Martin and Chuvieco, 1993). For the single channel density slicing method, researchers were slicing the histogram for getting different levels of severity within the fire perimeter. Several spectral indices were used, including the NDVI, the Soil Adjusted Vegetation Index (SAVI), the GEMI and the BAI (Chuvieco and Congalton, 1988; Chuvieco et al., 2002; Chuvieco and Martin, 1994a, 1994b; Koutsias and Karteris, 2000; Viedma et al., 1997). In these cases, usually the spectral signal of pre- and post-fire image was compared because of sharp changes in the spectral signal observed in specific spectral channels following the fire. Principal component analysis (PCA) has been used since early 1980s for BA and change detection analysis (Richards, 1984). Several approaches used PCA in BA mapping from: (i) an 8-dimensional multi-temporal image dataset consisting of two Landsat MSS scenes (Richards, 1984), (ii) a standardized PCA on a 12-dimensional multi-temporal image dataset consisting of two Landsat TM scenes, and a subset of spectral channels consisting of pairs of two spectral channels with low to medium correlation (Pereira 1992), (iii) multi-temporal ERS-2 SAR images acquired before and after the fire event (Siegert and Ruecker, 2000), (iv) a non-standardized PCA on a multi-temporal dataset comprising TM bands 3, 4, and 5 from both dates (García-Haro et al., 2001), (v) a dataset consisting of a standardized NDVI, surface temperature and albedo from a NOAA AVHRR time series dataset (Nielsen et al., 2002), (vi) a standardized PCA along with a simple, non-parametric, supervised classification (paralllelepiped) on a Landsat time series dataset consisting of 22 annual images of Landsat MSS, TM and Enhanced Thematic Mapper Plus (ETM +) from 1972 to 2002 (Hudak and Brockett 2004), and (vii) a forward/backward principal component analysis of Landsat-7 ETM + data to enhance the
spectral signal of burned areas (Koutsias et al., 2009).

Finally, the third group of studies refers to the classification techniques, on whether supervised and unsupervised methods were used. This depends on the previous knowledge of fire effects in the target region. The maximum likelihood classification and k-means clustering algorithms were employed in several studies either to directly map BA or to evaluate other classification techniques (Henry 2008; Pereira and Setzer, 1993). Methods based on logistic regression were introduced to map BA using multi-date (Koutsias and Karteris, 1998) and single-date (Koutsias and Karteris, 2000) Landsat TM imagery. The main consideration when implementing BA classifications was to express the classification problem in a binary way, i.e., burned vs unburned pixels. Other approaches, such as spectral mixture analysis (SMA), were first applied in BA mapping in the early 1990s (Caetano et al., 1996).

5. Current EO approaches to detect BA information

Building on the historical developments, BA detection algorithms have been improved in the last ten years, incorporating new processing approaches, as well as new sensors and new integration methods. The review of these recent developments is structured in different spectral domains: passive optical, active radar and LiDAR, with a brief section to comment on integrated methodologies. Table 1 includes a list of sensors from which most available BA products have been obtained.

5.1. Optical sensors

Global BA products rely on sensors that provide very high temporal resolution (daily images, sometimes multiple images each day), and coarse spatial resolution (≥250 m pixel size). To cope with the great diversity of worldwide fire conditions and with the potential problems in data acquisition, algorithms need to be robust and spatially adaptable. The first global BA products were based on regional algorithms (Tansey et al., 2004a), which were adapted to different fire conditions (boreal, tropical forest, grasslands, etc.). The main problems in this approach were the impacts of borders between regions and the potential variations of accuracy among ecosystems (Humber et al., 2018). For this reason, local-adapted or physically based approaches have been more common in the last years for global BA algorithms. The former aim to discriminate burned from unburned pixels based on a set of attributes (reflectance bands or spectral indices) from which discriminant functions are created by maximizing inter-class and minimizing intra-class variation. Examples are Bayesian classifiers (Riaño et al., 2007), random forests (Ramo and Chuvieco, 2017), and support vector machines (SVM) (Cao et al., 2009) approaches.

The most common methods for global BA mapping have been based on physically based rules that discriminate burned pixels from unburned. Additional spatial and temporal conditions are included to cope with the global diversity of fire conditions. This approach was the basis of one of the first global BA products derived from AVHRR pathfinder data (Carmona-Moreno et al., 2005). A similar approach has been later refined to generate the MODIS MCD64A1 (Giglio et al., 2018) and FireCCI50 (Chuvieco et al., 2018) products. In both of these 2018 studies, the algorithms integrate reflectance changes with active fire observations (hotspots, HS) obtained from thermal anomalies. Another way of including a physical model in BA detection is the use of BRDF correction models. These models aim to reduce the impact of illumination and observation geometry in the estimated reflectance. BRDF models have been used to estimate the post-fire reflectance (t+1) from the pre-fire conditions (t) and compare it with the actual t+1 reflectance. When the difference between the modeled and the measured reflectance exceeds a certain threshold, it is assumed that it indicates significant changes in cover conditions. This approach is used for NASA's MCD45A1 BA product (Roy et al., 2005; Roy et al., 2008).

Regional or national products have been developed in the recent years based on medium resolution sensors, taking advantage of the improvements in processing power and the free access to Landsat and Sentinel-2 acquisitions. Previous use of Landsat images for BA mapping was local, and the methods were difficult to generalize to other regions. The public release of the Landsat archive by the USGS in 2008 (Loveland and Dwyer, 2012) initiated a new era for using medium resolution sensors for regional (or even global) retrieval of BA, as it provided a wealth of freely available images, both covering large territories and for a long period of time.

In terms of methodological developments, the availability of Landsat time series made it possible to develop dedicated time-series detection methods for these images. They were initially applied to detect forest changes, but they have also been used for monitoring BA. These methods include the Vegetation Change Tracker (VCT) (Huang et al., 2010) and the Landsat-based detection of Trends in Disturbance and Recovery (LandTrendr) (Cohen et al., 2010; Kennedy et al., 2010), which divide annual time series of spectral responses into piecewise segments, and then use the changes between segments and characteristics of segments to delineate disturbances. In a further elaboration, Cohen et al. (2018) used the Random Forests algorithm to combine an ensemble of the LandTrendr results for different bands and indices into a single analysis. Similarly, Schultz et al. (2016) proposed and tested a methodology to fuse disturbance maps derived from different indices using the Breaks for Additive Seasonal and Trend (BFAST) algorithm.

Table 1
Satellite sensors used for burned area mapping. See the Annex A for acronym descriptions.

<table>
<thead>
<tr>
<th>Satellite (sensor) Operator</th>
<th>Operational dates</th>
<th>Temporal resolution</th>
<th>Spatial resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVISAT (MERIS) ESA</td>
<td>March 1, 2002</td>
<td>May 9, 2012</td>
<td>2–3 days</td>
</tr>
<tr>
<td>JPS (VIIRS) NOAA</td>
<td>October 28, 2011</td>
<td>Still operating</td>
<td>1–2 days</td>
</tr>
<tr>
<td>Landsat 1–3 (MSS) NASA/USGS</td>
<td>July 23, 1972</td>
<td>September 7, 1983</td>
<td>18 days</td>
</tr>
<tr>
<td>Landsat 4–5 (TM) NASA/USGS</td>
<td>July 16, 1982</td>
<td>June 5, 2013</td>
<td>16 days</td>
</tr>
<tr>
<td>Landsat 7 (ETM +) NASA/USGS</td>
<td>October 5, 1993</td>
<td>Still operating</td>
<td>16 days</td>
</tr>
<tr>
<td>Landsat 8 (OLI/TIRS) NASA/USGS</td>
<td>February 11, 2013</td>
<td>Still operating</td>
<td>17 days</td>
</tr>
<tr>
<td>NOAA-7-19 (AVHRR) NOAA</td>
<td>Oct 19, 1978</td>
<td>Still operating</td>
<td>1–2 days</td>
</tr>
<tr>
<td>PROBA V ESA</td>
<td>May 7, 2013</td>
<td>Still operating</td>
<td>1–2 days</td>
</tr>
<tr>
<td>Sentinel 1A-B (SAR) ESA</td>
<td>April 3, 2014 (1A)April 25, 2016 (1B)</td>
<td>Still operating</td>
<td>6 days</td>
</tr>
<tr>
<td>Sentinel 2A-B (MSI) ESA</td>
<td>June 23, 2015 (2A)March 7, 2017 (2B)</td>
<td>Still operating</td>
<td>5–20 m</td>
</tr>
<tr>
<td>Sentinel 3A-B (SLSTR, OLCI)ESA</td>
<td>16 February 2016 (3A)</td>
<td>Still operating</td>
<td>1–2 days</td>
</tr>
<tr>
<td>SPOT 1–7 (HRV) CNES</td>
<td>February 22, 1986</td>
<td>Still operating</td>
<td>26 days</td>
</tr>
<tr>
<td>SPOT 4–5 (VGT) CNES</td>
<td>March 24, 1998</td>
<td>July 2013</td>
<td>1–2 days</td>
</tr>
<tr>
<td>Terra-Aqua (MODIS) NASA</td>
<td>December 18, 1999 (Terra)</td>
<td>Still operating</td>
<td>1–2 days</td>
</tr>
<tr>
<td></td>
<td>May 4, 2002 (Aqua)</td>
<td></td>
<td>250–1000 m</td>
</tr>
</tbody>
</table>
which iteratively decomposes the observed time series into a trend, seasonal pattern, and residual component, with detection of sudden changes (DeVries et al., 2015; Verbesselt et al., 2010). Other approaches decomposed dense time series to separate seasonality and long-term trends and detect change as departure from those trends using Landsat data (Brooks et al., 2014; Zhu and Woodcock, 2014). Finally, others have detected change using decision trees with predictors characterizing the entire Landsat time series (Hansen et al., 2014). All of these methods detect abstract land change and require additional attribution to characterize the specific type of change, such as BA (Schröder et al., 2017; Zhao et al., 2015).

Change-detection algorithms specific to mapping BA across the full Landsat archive have also emerged. Using all available Landsat data for Queensland, Australia, Goodwin and Collett (2014) combined decision rules with a region-growing algorithm to identify areas of change and then classified which of those areas of change were caused by fire. In forested parts of the western US, Boschetti et al. (2015) identified areas of spectral change using composites of Landsat 7 ETM+ data from 2002 and then used MODIS active fire data to separate BA from other types of change. These two studies were the first to demonstrate that large territories can be routinely mapped from Landsat data with semi-automated approaches and paved the way for the development of the U.S. Geological Survey’s Landsat Burned Area Essential Climate Variable (BAECV) (Hawbaker et al., 2017). The BAECV algorithm was developed to consistently map burned areas ≥4 ha across the contiguous U.S. regardless of ecosystem type using all available Landsat data by combining a gradient boosted classifier with thresholding and region growing.

Landsat-based studies also set forth the development of approaches to map BA using data from the Sentinel-2A and 2B missions, which provide free accessible images, in 13 spectral channels (from 10 to 60 m of spatial resolution) and with a combined 5-day coverage period. Using Sentinel-2 images, Roteta et al. (2019) have been recently able to map BA for the whole Sub-Saharan Africa including all Sentinel-2A acquisitions for 2016. The accuracy of this BA product significantly improved that obtained from coarse resolution sensors, particularly in detection of small burns (<100 ha). Landsat and Sentinel-2 images have also been used in conjunction to estimate burn severity (Mallinis et al., 2018).

In addition to time series analysis, recent techniques for BA mapping using medium resolution sensors have relied on new classification approaches, such as fuzzy memberships, object oriented and radiative transfer models (RTM). Fuzzy approaches have been explored by Stroppiana et al. (2012a) to integrate partial evidence of BA provided by different spectral indices. Variations of spectral mixture analysis (SMA) approaches have been recently proposed, including spectral angle mapper classifiers (Oliva et al., 2011; Quintano et al., 2013) or the Multiple Endmember Spectral Mixture Analysis (MESMA), which allows more than two endmembers (Roberts et al., 1998). The key success factor in SMA and MESMA is to provide a suitable library of spectra for well-chosen endmembers. They can be specified in advance or be derived from known pixels within the image. Fernandez-Manso et al. (2016) used MESMA to delineate BA and estimate fractions of the endmembers, although it was not clear if the results were superior over other approaches (e.g., index-based). Since burn conditions are quite diverse, data mining techniques have been recently proposed to select the most adequate inputs for generating machine learning classifiers (Ramo et al., 2018).

Object-based image analysis (OBIA) constitutes an alternative classification technique to the pixel-by-pixel approach and has become quite popular in the field of remote sensing (Benz et al., 2004). OBIA has been used successfully to map BA (Gitas et al., 2004; Mitri and Gitas, 2010; Polychronaki and Gitas, 2010), reducing common errors found in pixel-based multispectral classifications (Weih and Riggan, 2010), and mitigating spectral overlapping between burned and other land cover classes (Mitri and Gitas, 2004). In addition, the ‘per-object’ approach facilitates the synergy between advanced image analysis techniques (e.g. feature selection methods) and classification methods, resulting in thematic maps of higher accuracy (Dragozi et al., 2014). Even though most OBIA studies were primarily focused on high-spatial resolution images (Dragozi et al., 2014; Polychronaki and Gitas, 2012), these methods have been successfully used with coarser resolution data such as AVHRR (Gitas et al., 2004) or MODIS (Mohler and Goodin, 2012).

Another recent approach to BA discrimination has been the use of physical-based models (radiative transfer models: RTM), which have been mostly addressed towards burn severity estimation. Forward simulation implies generating a set of realistic conditions from RTM, while inverse modeling implies comparing satellite measured reflectance with modeled reflectances. The input variables used to obtain the most similar modeled to actual pixel reflectance are then assigned to each pixel. Both forward and backward simulations have been performed, trying to obtain realistic scenarios of post-fire conditions. These model scenarios were based on simulating Composite Burned Index (CBI) values. CBI is a widely used protocol to estimate field severity (Key and Benson, 2006). The simulation was obtained with a two-layer RTM, which accounted for average values of leaf area index and leaf pigment changes caused by the fire (Chuvieco et al., 2006). The model was later applied to estimating CBI values for several large fires in Spain (De Santis and Chuvieco, 2007; De Santis et al., 2009) and coastal California (De Santis et al., 2010). Since the retrieval of CBI values from satellite data may be greatly affected by fraction of forest cover, De Santis et al. (2009) proposed a modification of the original CBI method to take into account this variable.

Finally, to balance commission and omission errors, several classification approaches propose to detect BA in two phases: the first one would be addressed to reduce commission errors by classifying only the most clearly burned pixels, while the second would aim to reduce omission errors, by adding to the first-stage detected pixels those neighbors that have similar spectral characteristics (Alonso-Canas and Chuvieco, 2015; Bastarrika et al., 2011a; Bastarrika et al., 2011b; Chuvieco et al., 2008; Stroppiana et al., 2012b).

5.2. Radar

Burned area detection from SAR data was frequently employed over tropical areas characterized by persistent cloud cover (Lohberger et al., 2018; Siegert and Ruecker, 2000; Verheggen et al., 2016) or at high latitudes where low sun angles hindered observations with optical sensors (Bourgeau-Chavez et al., 1997; Bourgeau-Chavez et al., 2002; Goodenough et al., 2011; Kasischke et al., 1994; Kasischke et al., 1992). Other studies used change-detection frameworks coupled with non-parametric classifiers (Gimeno and San-Miguel-Ayanz, 2004), object-based classification methods (Lohberger et al., 2018; Polychronaki et al., 2013), empirically derived thresholds (Verheggen et al., 2016) or region-growing algorithms (Imperatore et al., 2017) to detect the BA. Few studies used the C-band interferometric coherence to delineate fire scars in tropical environments. Such studies used empirically derived thresholds applied to temporal differences of pre- and post-fire coherence estimates (Liew et al., 1999). More recent studies focused on radar polarimetric properties (Goodenough et al., 2011) and integrating radar and optical datasets within common detection algorithms (Stroppiana et al., 2015) or through integration of the radar and optically detected burned areas (Verheggen et al., 2016). Such studies demonstrated that fires result in ambiguous effects depending on the radar wavelength, polarization, and meteorological conditions at image acquisition (Lohberger et al., 2018; Ruecker and Siegert, 2000) (Imperatore et al., 2017; Polychronaki et al., 2013; Tanase et al., 2010b) (Bourgeau-Chavez et al., 2002; Huang and Siegert, 2006; Kasischke et al., 1994) (Gimeno and San-Miguel-Ayanz, 2004) (Menges et al., 2004).

SAR data were also used to estimate fire impacts from the
backscatter coefficient (Kurum, 2015), the interferometric coherence (Tanase et al., 2010a) or through polarimetric decomposition techniques (Tanase et al., 2014). Most studies used post-fire images (Bourgeau-Chavez et al., 1994; Tanase et al., 2010a; Tanase et al., 2010b) or change detection frameworks based on pre- and post-fire datasets (Kurum, 2015; Tanase et al., 2015b) while few authors focused on the synergy between optical and radar sensors (Tanase et al., 2015a). The most accurate results were obtained using the cross-polarized HV (H) backscatter and longer wavelengths such as the L-band with the retrieval accuracy being negatively influenced in areas of steep topography or with high soil moisture (Kalogirou et al., 2014; Kasischke et al., 2007; Tanase et al., 2010b). The influence of topography was removed through change detection approaches while the use of datasets acquired under dry environmental conditions or multi-temporal averages were suggested to reduce the effect of varying soil and vegetation moisture content (Tanase et al., 2015b; Tanase et al., 2010a). In addition, the dependency of in situ data for modeling was eliminated by using polarimetric decomposition techniques (Tanase et al., 2014). However, the scarcity of full polarimetric acquisitions has precluded the use of polarimetric analysis over large areas.

5.3. Lidar

An appropriate evaluation of the impact of the fire on the vegetation would require pre- and post-fire LiDAR acquisition. Since most of the available data are airborne, there is a scarcity of studies based on the bitemporal acquisitions (McCarley et al., 2017a,b). Therefore, the use of LiDAR data for fire effects assessment commonly relies on comparing the affected areas to adjacent unburned areas or combined with bitemporal multispectral data (Montealegre et al., 2014).

Most of published studies rely on the CBI to estimate post-fire effects from airborne LiDAR data. Wang and Glenn (2009) estimated CBI values over a sagebrush rangeland in the U.S. from bitemporal LiDAR data as the difference in mean vegetation height over 5 × 5 m cells. Height differences were classified into three burn severity levels (low to high) using ≥ 100 field samples to establish the height difference threshold for each level. Montealegre et al. (2014) calibrated a logistic regression model to relate post-fire LiDAR metrics to field CBI measures over Mediterranean forests in Spain. The output probabilities of the model were further grouped into different burn severity levels.

Several studies have used a combined approach of airborne LiDAR and passive sensors to estimate post-fire effects. Kwak et al. (2010), for instance, used LiDAR data to estimate the degree of physical damage (loss of canopy cover), while NDVI values from a multispectral sensor were used to determine the biological damage (vegetation vitality). Physical and biological damage were subsequently combined to classify the affected area into four levels of fire damage. Structural changes in the forest cover related to fire effects were retrieved by McCarley (2017a) from a bitemporal LiDAR dataset along with several spectral indices derived from Landsat data in a temperate coniferous forest in the U.S. The best relationships between multispectral and LiDAR data occurred for changes in canopy cover whereas the relationships with LiDAR metrics representing changes in mid and lower strata weakened and became poorly correlated with those LiDAR metrics representing changes near the surface layer. Wuider et al. (2009) investigated two transects (pre- and post-fire) of data collected with an airborne profiling LiDAR system with Landsat imagery to relate changes in forest structure to post-fire conditions estimated by spectral indices over a burned boreal forest in Canada. Due to the lack of spatial coincidence between the two LiDAR transects, the post-fire image was segmented using an object-based approach and structural metrics were summarized for each segment, representing homogeneous vegetation patches, as well as for the total length of the transects.

Only one study based on satellite LiDAR measurements for BA mapping has been published so far. Goetz et al. (2010) evaluated fire disturbance over boreal forests in Alaska, using ICESat Geoscience Laser Altimeter System (GLAS) data. Because of observation limitations of this sensor, structural changes were assessed after stratification of the area based on time since fire, vegetation type (deciduous vs. coniferous) and burn severity. Although differences in vegetation height between burned and unburned areas were found to be significant, these authors showed that this metric alone may not be the most adequate to evaluate fire effects since it is affected by regrowth rates in different vegetation types as well as the different burn severity levels.

Very few studies have analyzed the impacts of fire on soil carbon storage. Ballhorn et al. (2009) compared the height difference between burned and adjacent unburned areas along 79 airborne LiDAR transects over peat swamp forests in Central Kalimantan, Borneo, during the 2006 El Niño episode. Soil consumption estimates were in close agreement with field measurements. Reddy et al. (2015) estimated soil consumption by a peat fire in North Carolina and Virginia, USA, based on the elevation change from bitemporal airborne LiDAR datasets and compared the results to consumption values estimated using the First-Order Fire Effects Model (FOFEM). They found LiDAR estimates more accurate than modeled estimates due to the limited representation of peat depth in the LANDFIRE fuel model input layer. Additionally, they analyzed the influence of LiDAR elevation errors in the carbon loss estimates using a Monte Carlo simulation to find out that LiDAR elevation errors did not significantly contribute to the uncertainty in the soil carbon loss. The difference in elevation using pre- and post-fire airborne LiDAR data after elevation matching over invariant targets was used by Alonzo et al. (2017) to compute the consumption of surface litter and organic soils in a boreal forest fire in Alaska, USA. This study showed that elevation over the burned area had statistically significant differences and those differences were more important in areas where deeper organic soils developed.

5.4. Synergetic approaches

In addition to using new sensors and approaches, recent BA products have also taken advantage of integrating different EO techniques to strengthen the discrimination of burned pixels and reduce both omission and commission errors.

The most synergistic approach has been the combined use of thermal anomalies (HS, from MIR and TIR bands) and changes in reflectance from NIR, SWIR and visible bands. The former identifies active fires while the latter detects BA. Thermal amplification caused by active fires is very distinct and helps to identify burning pixels, while the post-fire signal of charcoal and scorched vegetation lasts longer and covers the whole area affected by fire. The former avoids potential commission errors (discriminating those reflectance changes most likely to be actual fires), while the latter helps delineating the whole area affected by the fire (not just the burning pixels) and therefore aids to reduce omission errors. Typically, before running a hybrid BA algorithm, the HS are filtered to remove stable thermal anomalies, which are commonly associated with power stations, volcanos or gas flares. Then, HS are used to discriminate between actual BA and the surroundings, reducing the potential confusions caused by reflectance changes that are unrelated to fire (such as seasonal floods, cropping, deforestation, etc.). Hybrid algorithms were first proposed 20 years ago (Fraser et al., 2000; Roy et al., 1999) and have been since then extensively applied to BA mapping. Two of the most recent global BA products, MCD64A1 from NASA (Giglio et al., 2018), and FireCCiS0 from ESA (Chuvieco et al., 2018) used this approach. Hybrid algorithms have also been used with medium resolution data, for instance, merging 1 km MODIS active fire detections and multi-temporal Landsat TM-ETM + images over the western United States (Boschetti et al., 2015). Also, a hybrid algorithm was utilized to map 2016 BA in the whole Sub-Saharan Africa from Sentinel-2 images (Roteta et al., 2019).

Another approach to combine different sensors is the joint use of optical and radar data. Some examples are the study by Stroppiana et al. (2015) centered in Portugal that mapped BA from Landsat and

Envisat-ASAR data, and the analysis of Verbeecken et al. (2016) who used Sentinel-1 and Sentinel-2 images to map BA in Congo by thresholding the differences in pre- and post-fire VV polarization (Sentinel-1) and NDVI and NDWI (Sentinel-2) spectral indices. They found that Sentinel-2 data with their 5-day revisit could effectively map BA in places with frequent cloud cover. However, incorporating radar data from Sentinel-1 improved their results where Sentinel-2 images were obscured by cloud cover.

Integrated analysis of LiDAR and passive optical sensors have also been performed for BA mapping. Garcia et al. (2017), for instance, integrated post-fire LiDAR data and bitemporal Landsat data. Pre-fire biomass was estimated using a two-step approach. First, a LiDAR model was calibrated using field data to estimate biomass over the study area. Second, in order to derive pre-fire biomass values, LiDAR-based estimates across the 2 km buffer were extrapolated over the whole area using pre-fire Landsat data. By comparing pre-fire to post-fire biomass values, it was possible to compute the biomass consumed by the fire.

6. Existing EO-derived BA products

6.1. Global products

After the first attempts to generate global BA products in the late 1990s, the early 2000s provided the mature conditions to release the first global semi-operational BA datasets. Building on the experience of NOAA-AVHRR BA algorithms (Barbosa et al., 1999a; Fernández et al., 1997; Kasten and French, 1995; Langaas, 1992; Martin and Chuvieco, 1995; Pereira, 1999), the new BA products were mainly based on the MODIS sensors, on board NASA's Terra and Aqua satellites, and the SPOT Vegetation (VGT) sensor (Table 2).

The first global BA product at coarse resolution was produced by the Joint Research Centre of the European Union. It was named Global Burned Area (GBA2000) and was based on daily VGT images acquired throughout the 2000. This product had 1 km² spatial resolution and provided monthly estimates of BA. The BA detections were based on seven regional algorithms adapted to different fire conditions (Tansey et al., 2004b). In parallel to the GBA project, the European Space Agency developed the GLOBSCAR BA product for the same year 2000. This global monthly product was derived from daytime ERS-2 ATSR-2 data with a nominal pixel size of 1 km². BA detection relied on the combination of a contextual and a fixed threshold algorithm (Simon et al., 2004).

Following the experience of GBA, other global BA products have been released by European institutions: the L3JRC (Tansey et al., 2008) covering the period from 2000 to 2007; the GLOBSCAR (Plummer et al., 2006), from 1998 to 2007, and the Copernicus GIO_GL1 BA products, all at 1 km spatial resolution. All these products were derived from VGT images (in GLOBSCAR, ATSR images were used as well). The exception is the most recent version of the Copernicus GIO_GL1 BA, which after 2013 has 333 m resolution and is derived from PROBA-V data (https://land.copernicus.eu/global/products/ba, last accessed July 2018).

In a different context, the Fire_CCI project (part of the European Space Agency's Climate Change Initiative) has generated three global BA products over the last few years. The first one was named FireCCI41 and it was based on 300-m resolution MERIS images from the ENVISAT satellite, covering the period from 2005 to 2011. The BA algorithm was a hybrid and two-phase approach, where MERIS reflectances were supplemented with first MODIS HS to detect the most clearly burned pixels and then contextual criteria were applied for improved delineation of burned patches (Alonso-Canas and Chuvieco, 2015; Chuvieco et al., 2016). The most recent products of the Fire_cci project (FireCCI50 and S1) were derived from MODIS 250 m bands (R and NIR reflectance) also supplemented with HS. They cover the full time series of Terra-MODIS (2000–2017) (Chuvieco et al., 2018). The product is publicly available at www.esa-fire-cci.org (last accessed February 2019).

Table 2: Overview of global burned area datasets. See the Annex A for a list of acronyms.

<table>
<thead>
<tr>
<th>Name of burned area dataset</th>
<th>Spatial resolution</th>
<th>Temporal compounding</th>
<th>Sensor/method</th>
<th>Development purpose</th>
<th>Time span</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>L3JRC 2000</td>
<td>p:1km, d:5/10/25, 0.25, 0.5, 1</td>
<td>Monthly</td>
<td>SPOT VGT</td>
<td>Global purpose</td>
<td>2000</td>
<td>Tansey et al. (2008)</td>
</tr>
<tr>
<td>GBA2000</td>
<td>p:1km, g:0.25d</td>
<td>Monthly</td>
<td>SPOT VGT; ERS2-ATSR2</td>
<td>Global purpose</td>
<td>2000</td>
<td>Tansey et al. (2004a)</td>
</tr>
<tr>
<td>Envisat-ASAR data</td>
<td>p:1km</td>
<td>Monthly</td>
<td>ATSR</td>
<td>Global purpose</td>
<td>2000–07</td>
<td>Tansey et al. (2004b)</td>
</tr>
<tr>
<td>GFED4</td>
<td>p:500m, g:0.25d</td>
<td>Daily</td>
<td>MODIS</td>
<td>Atmospheric and bio-geochemical models</td>
<td>1997–present</td>
<td>Friedlingstein et al. (2017)</td>
</tr>
<tr>
<td>GFED3</td>
<td>p:500m, g:0.25d</td>
<td>Daily</td>
<td>MODIS</td>
<td>Atmospheric and bio-geochemical models</td>
<td>2000–2017</td>
<td>Friedlingstein et al. (2017)</td>
</tr>
<tr>
<td>MCD64A1c51</td>
<td>p:500m, g:0.25d</td>
<td>Biweekly</td>
<td>MODIS</td>
<td>Climate and dynamic vegetation</td>
<td>2000–17</td>
<td>Friedlingstein et al. (2017)</td>
</tr>
<tr>
<td>MCD64A1c6</td>
<td>p:500m, g:0.25d</td>
<td>Monthly</td>
<td>MODIS</td>
<td>Climate and dynamic vegetation</td>
<td>2000–17</td>
<td>Friedlingstein et al. (2017)</td>
</tr>
<tr>
<td>MCD45A1c51</td>
<td>p:500m, g:0.25d</td>
<td>Monthly</td>
<td>MODIS</td>
<td>Climate and dynamic vegetation</td>
<td>2000–17</td>
<td>Friedlingstein et al. (2017)</td>
</tr>
</tbody>
</table>
NASA has also been very active in generating global BA products. The first one released was the MCD45A1 product derived from 500 m MODIS imagery. This product employed a BRDF model to detect significant differences between observed and predicted daily reflectance data (Roy et al., 2008). This product was the standard NASA BA product from 2000 through 2016, but it has been recently superseded by MCD64A1. In contrast to the MCD45A1 product, the MODIS MCD64A1 product employs a hybrid algorithm that uses both the reflectance changes and the thermal anomalies associated with biomass burning (Giglio et al., 2009). The current version of this algorithm (collection 6) provides considerably more sensitivity than the original and identifies 26% more global BA than previous collection (Giglio et al., 2018). This product is processed from 2000 to the present (https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd64a1_v006, last accessed February 2019).

The MCD64A1 product in combination with additional variables on fuel properties and emission coefficients has in turn been used to produce the Global Fire Emissions Database (GFED). Current versions of the GFED (designated GFED4 and GFED4s) include data from the MCD64A1 collection 5 product, as well as the ATSR sensor for the pre-MODIS era (1995–2000). GFED4s adds an estimation of the area burned by small fires (<100 ha), which are commonly not detected by global products based on coarse resolution sensors. GFED4s estimates the contribution of those small fires by BA to MODIS active fire hotspots located outside of burned patches mapped in the MCD64A1 BA product. The BA allocated to each “outside-of-burn” hotspot is in turn estimated using postulated relationships between dNBR, the number of “within-burn” hotspots, and the BA actually mapped in the MCD64A1 product (Randerson et al., 2012; van der Werf et al., 2017).

Fig. 2 shows average BA for different global products in the common available years. Even though a full comparison of global BA products is still to be done, those recently performed showed common spatial patterns, particularly in those based on hybrid algorithms that use common hotspots (Humber et al., 2018; Chuvieco et al., 2018).

6.2. Regional products

Several countries have been operationally developing BA mapping products in the framework of various fire monitoring systems. In the United States, the Monitoring Trends in Burn Severity (MTBS) project was sponsored by the Wildland Fire Leadership Council (WFLC) and implemented jointly with the U.S. Geological Survey (USGS) and Forest Service (Eidenshink et al., 2007). The project’s objective was the systematic production of BA maps and associated burn severity information. Among the different data employed by the MTBS project, pre-fire and post-fire Landsat TM, Enhanced TM Plus (ETM +), and OLI imagery are mainly used for the computation of the dNBR and the subsequent generation of estimated burn severities.

The U.S. Geological Survey has also recently developed the Landsat Burned Area Essential Climate Variable (BAECV) project, which covers the conterminous U.S. (Hawbaker et al., 2017). The BAECV algorithm was used to identify burned areas ≥ 4 ha in every Landsat TM and ETM + images with <80% cloud cover from 1984 through 2015 across the conterminous territory of USA. A modified version of the BAECV algorithm has been developed for use with Landsat OLI data. New Landsat BA products using the modified BAECV algorithm are available through the USGS EarthExplorer (earthexplorer.usgs.gov) interface for Landsat TM, ETM + and OLI data from 1984-present.

The lack of harmonized BA information and a holistic approach for forest fire prevention in Europe motivated the European Commission services and the relevant fire services of each country to develop the European Forest Fire Information System (EFFIS) (San-Miguel-Ayanz et al., 2012). EFFIS is a comprehensive forest fire management system with its core applications based on remote sensing and geographic information systems (GIS), which currently supports the monitoring of fires in 41 countries in Europe, Middle East and North Africa (http://effis.jrc.ec.europa.eu, last accessed September 2018).
incorporates different modules, namely FIRE Danger Forecast, Active
Fire Detection, Rapid Damage Assessment and post-fire modules.
MODIS data are employed for the detection of hot spots and BA map-
ing (for fires over 40 ha) on a European scale. Subsequently, this in-
formation is integrated into a national GIS for further analysis at a
country level. BA products of high resolution are also provided, upon
demand, by the Copernicus Emergency Management Service (EMS).
This service is based on the rapid acquisition, processing and analysis of
satellite imagery and other geospatial datasets after a fire event.

In Mexico and Central America, a semi-operational program to
provide information on BA and active fire was established in early
2000s. The system is operated by the National Commission for
the Knowledge and Use of the Biodiversity (CONABIO; Ressl et al.,
2009). Hot spots are mapped with AVHRR and MODIS data, following methods
of Flasse and Cecatto (1996) and Giglio et al. (2003). BA mapping is
derived from NDVI and NBR values computed from MODIS-Aqua data.

The Forest Research Centre in the School of Agriculture at the
Technical University of Lisbon in Portugal has developed a national
operational BA mapping system based on remotely sensed data. In
particular, the system employs time series of Landsat MSS, TM and ETM+
data for BA delineation for the time period from 1975 to present. The
resulting maps are utilized for structural fire risk mapping and the
products are operationally used by the National Forest Authority, the
National Authority for Civil Protection and by large private landowners
(Nunes et al., 2005; Oliveira et al., 2012).

In Greece, an Operational Burned Area Mapping (OBAM) service
has been developed in the framework of the National Observatory of
Forest Fires (NOFFi) project implemented by the Laboratory of Forest
Management and Remote Sensing of the Aristotle University of
Thessaloniki (AUTH) in collaboration with the Hellenic Ministry of
Environment and Energy and financially supported by Greece's Green
Forest Fires (NOFFi) project implemented by the Laboratory of Forest
has been developed in the framework of the National Observatory of
Forest Fires (NOFFi) project implemented by the Laboratory of Forest
Management and Remote Sensing of the Aristotle University of
Thessaloniki (AUTH) in collaboration with the Hellenic Ministry of
Environment and Energy and financially supported by Greece's Green
Forest Fires (NOFFi) project implemented by the Laboratory of Forest
has been developed in the framework of the National Observatory of
Forest Fires (NOFFi) project implemented by the Laboratory of Forest
Management and Remote Sensing of the Aristotle University of
Thessaloniki (AUTH) in collaboration with the Hellenic Ministry of
Environment and Energy and financially supported by Greece's Green
Forest Fires (NOFFi) project implemented by the Laboratory of Forest
Management and Remote Sensing of the Aristotle University of
Thessaloniki (AUTH) in collaboration with the Hellenic Ministry of
Environment and Energy and financially supported by Greece's Green
Forest Fires (NOFFi) project implemented by the Laboratory of Forest
Management and Remote Sensing of the Aristotle University of
Thessaloniki (AUTH) in collaboration with the Hellenic Ministry of
Environment and Energy and financially supported by Greece's Green
Forest Fires (NOFFi) project implemented by the Laboratory of Forest

products with high resolution and Landsat reference imagery can give conflicting results. For example, when using high-resolution reference imagery, BAECV (Hawbaker et al., 2017) omission and commission errors were 22% and 48%, respectively (Vanderhoof et al., 2017a). However, omission and commission of the BAECV products were 42% and 33% when validated with Landsat reference imagery (Vanderhoof et al., 2017b). The increase in commission error was largely the result of differences in resolution, as unburned areas within-fire patches could be delineated with more detail in the high-resolution imagery. However, both analyses showed that the commission and omission errors of the Landsat burned area products were less than those reported for coarse-resolution global products.

7. The way ahead

Remote sensing of burned areas has changed our view of patterns of burning and understanding of the drivers and impacts of fires at regional, continental, and global scales. Although many national, state, and local government agencies collect information about prescribed fires and wildfires, they are often error prone, incomplete, and limited because of inconsistent collection efforts over space and time, introducing much uncertainty into analyses based upon them. In contrast, the routine collection of BA data from remotely sensed imagery has allowed us to overcome many of those limitations. By applying BA detection algorithms over large spatial extents and over extended time periods, remote sensing has allowed us to generate data products that have spatial and temporal consistency, which agency reports generally lack. This includes the spatial extent of BA (perimeters), as well as within-fire heterogeneity such as identification of unburned islands within the perimeters and, in some cases, estimates of burn severity. Furthermore, the spatial progression of fires can be tracked by sensors collecting data at high temporal frequencies (e.g. daily or better). Such information has provided the foundation for national- and global-scale studies on the patterns, drivers, and impacts of fires on human and natural systems.

Chief among the strengths of existing operational BA products are their broad spatial coverage (generally global) and the comparatively long BA time series they provide (19 years in the case of those produced using MODIS data), even though the temporal sequence is still short for characterizing fire regimes and for atmospheric and carbon modelers. The most significant limitation of the existing suite of global BA products is their relatively coarse native spatial resolution, which varies from 250 m (FireCCI50) to 1 km (e.g., L3JRC). The degree of fidelity provided by such resolutions is generally not adequate for resolving small and/or highly fragmented fires (Iva and Lambin, 1998; Laris, 2005; Roy and Boschetti, 2009), leading to a substantial underreporting of BA (Padilla et al., 2015; Roteta et al., 2019). BA may also be missed when fires leave little residual heat and spread rapidly between satellite overpasses (Hawbaker et al., 2008) or when the differences between pre- and post-fire spectral characteristics are minimal. Commission errors may occur when there is confusion between BA and other disturbances, for example clear cuts, land conversion, non-fire forest mortality (Kennedy et al., 2016; Schroeder et al., 2017; Zhao et al., 2015). Given these challenges, it is not surprising that estimates of BA may vary substantially when detected with different sensors (Padilla et al., 2015) or different algorithms (Hawbaker et al., 2017).

BA products incorporate different auxiliary variables that help end users, particularly climate modelers. The uncertainty of detection is a critical one, which still needs to be better standardized, as currently it is based on algorithm-dependent approaches. The temporal reporting uncertainty should also be delivered, particularly for atmospheric modelers. The type of burned land cover generally relies on external land cover products, which obviously imply a certain degree of uncertainty on their own, further complicating the global assessment of uncertainties in final BA products.

Another limitation of current BA products is the lack of information on combustion completeness and fraction of burned area, which are two critical parameters for atmospheric emission estimates. The combined use of BA and active fire information, both from geo-stationary and polar orbiting platforms, should benefit the current emission estimates greatly, by integrating energy release by active fires with magnitude of reflectance changes in optical images. This is particularly the case of detection of small fires, and a good representation of the temporal evolution of fires for which active fire detections provide the most information—especially from geostationary platforms. Reliable temporal information is mostly needed to align emissions with the proper atmospheric conditions for transport which is highly variable due to changing weather patterns. The key hurdle to overcome is a dearth of field measurements of fuel consumption (van Leeuwen et al., 2014). Even though Fire Radiative Power (FRP) or Fire Radiative Energy (FRE) values derived from satellite observations provide independent estimates of emissions or fuel consumption, further efforts are required to reduce the uncertainties in estimating both (Andela et al., 2016; Ichoku and Ellison, 2014; Kaiser et al., 2012).

The importance of small and/or fragmented fires for improving the estimations of atmospheric emissions and for analyzing the impacts of fire on deforestation processes is creating the momentum to undertake the generation of global BA products based on medium resolution sensors, now in the range of 10–30 m (Roteta et al., 2019). This obviously implies a high demand in terms of computer processing and data distribution and assessment, particularly for climate modelers who work at much coarser spatial resolution. Long-term regional BA products are available at much finer spatial resolution, such as the 30-m MTBS dataset, which spans the United States, though these come at a cost of reduced spatial coverage. Improvements in cloud processing and distributed archive facilities (e.g. Google Earth Engine) may greatly help to carry out global analysis at medium spatial resolution. Temporal coverage of these sensors may also create difficulties to detect fires in areas with frequent cloud cover and rapid vegetation regrowth (Hawbaker et al., 2015; Padilla et al., 2015). The combined use of optical and SAR data may help the BA detection in regions where optical sensors perform poorly on their own. The launch of ESA’s Sentinel-1 satellite constellation overcomes some of the past limitations of SAR data for BA mapping, particularly in terms of temporal coverage. Improvements in sensors characteristics (e.g., dual polarization, increased spatial resolution and incidence angle, precise orbital information), provides an excellent opportunity to develop algorithms for mapping fire impacts at continental to global scales (Engelbrecht et al., 2017; Lobberger et al., 2018; Verheggen et al., 2016). Future research should focus on automatic, locally adaptive detection algorithms that take into account the large variability of post-fire backscatter response between vegetation types as well as variability induced by meteorological conditions during data acquisition or topographic slope.

Progress in the development of new sensors next to the rapid progress on image processing and numerical processing capabilities provide a bright future to the remote sensing applications for BA mapping in near real time, while allowing for the creation of comprehensive archives of data on BA from local to global scales. The main challenge in the operational use of medium spatial resolution imagery remains in the real-time access to the data, the timely creation of BA products through the integration of EO products of diverse sources and spatial resolutions, and their provision via web services to the final users. Wildfire management services are among the users’ communities that are better adapted to use satellite products, which are often available through stable regional information systems such as the EFFIS in Europe, the Geospatial Technology and Applications Center (GTAC) in the USA or the Advance Fire Information System (AFIS) in South Africa. Although global BA products have already been available for some time, their use by operational wildfire management organizations has been fairly limited. These products were used by the modeler’s communities or in the multi-annual assessment of fire effects by either
researchers or United Nations agencies such as United Nations Food and Agriculture Organization (FAO). However, the development of new initiatives such as the Global Wildfire Information System in the context of the Group on Earth Observations work program and the Copernicus European Union Program may be a catalyst for the operational use of BA products and other EO products that may help in the management of wildfires and the assessment of wildfire impacts at the global scale.

Disclaimer: Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Annex A. List of acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFIS</td>
<td>Advance Fire Information System</td>
</tr>
<tr>
<td>AR</td>
<td>Assessment Reports</td>
</tr>
<tr>
<td>ATSR</td>
<td>Along track scanning radiometer</td>
</tr>
<tr>
<td>AVHRR</td>
<td>Advanced Very High-Resolution Radiometer</td>
</tr>
<tr>
<td>BA</td>
<td>Burned area</td>
</tr>
<tr>
<td>BAECV</td>
<td>Burned Area Essential Climate Variable</td>
</tr>
<tr>
<td>BAECV</td>
<td>Landsat Burned Area Essential Climate Variable</td>
</tr>
<tr>
<td>BAI</td>
<td>Burned area index</td>
</tr>
<tr>
<td>BAIM</td>
<td>Modified burned area index</td>
</tr>
<tr>
<td>BRDF</td>
<td>Bidirectional reflectance distribution function</td>
</tr>
<tr>
<td>BFAST</td>
<td>Breaks for Additive Seasonal and Trend</td>
</tr>
<tr>
<td>BGR</td>
<td>Blue, green and red</td>
</tr>
<tr>
<td>CBI</td>
<td>Composite Burned Index</td>
</tr>
<tr>
<td>CCI</td>
<td>Climate Change Initiative</td>
</tr>
<tr>
<td>CCM</td>
<td>Chemistry-climate models</td>
</tr>
<tr>
<td>CEOS</td>
<td>Committee on Earth Observing Satellites</td>
</tr>
<tr>
<td>CONABIO</td>
<td>Comisión Nacional para el Conocimiento y Uso de la Biodiversidad</td>
</tr>
<tr>
<td>COP</td>
<td>Conference of the Parties</td>
</tr>
<tr>
<td>CTM</td>
<td>Chemical transport models</td>
</tr>
<tr>
<td>CWIFS</td>
<td>Canadian Wildland Fire Information System</td>
</tr>
<tr>
<td>DGVM</td>
<td>Dynamic Global Vegetation Model</td>
</tr>
<tr>
<td>EFFIS</td>
<td>European Forest Fire Information System</td>
</tr>
<tr>
<td>EMS</td>
<td>Emergency Management Service</td>
</tr>
<tr>
<td>EMT+</td>
<td>Enhanced Thematic Mapper Plus</td>
</tr>
<tr>
<td>Envisat</td>
<td>Environmental satellite</td>
</tr>
<tr>
<td>EO</td>
<td>Earth observation</td>
</tr>
<tr>
<td>ERS</td>
<td>European Remote-Sensing Satellite</td>
</tr>
<tr>
<td>ERTS</td>
<td>Earth Resources Technology Satellite</td>
</tr>
<tr>
<td>ESA</td>
<td>European Space Agency</td>
</tr>
<tr>
<td>EUSF</td>
<td>European Union Solidarity Fund</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization</td>
</tr>
<tr>
<td>FINN</td>
<td>Fire INventory from NCAR</td>
</tr>
<tr>
<td>FireCCI50</td>
<td>MODIS based 250 m global BA product derived from the Fire_cci project</td>
</tr>
<tr>
<td>FOFEM</td>
<td>First-Order Fire Effects Model</td>
</tr>
<tr>
<td>FRRE</td>
<td>Fire Radiative Energy</td>
</tr>
<tr>
<td>FRP</td>
<td>Fire radiative power</td>
</tr>
<tr>
<td>GA</td>
<td>Geoscience Australia</td>
</tr>
<tr>
<td>GBA</td>
<td>Global Burnt Area</td>
</tr>
<tr>
<td>GCOS</td>
<td>Global Climate Observing System</td>
</tr>
<tr>
<td>GDP</td>
<td>Global domestic product</td>
</tr>
<tr>
<td>GEMI</td>
<td>Global environmental monitoring index</td>
</tr>
<tr>
<td>GFED</td>
<td>Global Fire Emission Database</td>
</tr>
<tr>
<td>GIO,GLI</td>
<td>Global BA product derived from the Copernicus Land Service</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic information systems</td>
</tr>
<tr>
<td>GLAS</td>
<td>Geoscience Laser Altimeter System</td>
</tr>
<tr>
<td>GLOBSAR</td>
<td>Global Burnt Scars</td>
</tr>
<tr>
<td>HH</td>
<td>Horizontal-horizontal</td>
</tr>
<tr>
<td>HRV</td>
<td>Haute Résolution Visible</td>
</tr>
<tr>
<td>HRV</td>
<td>High Resolution Visible</td>
</tr>
<tr>
<td>HS</td>
<td>Hotspots</td>
</tr>
<tr>
<td>HV</td>
<td>Horizontal-vertical</td>
</tr>
<tr>
<td>ICESat</td>
<td>Ice, Cloud, and land Elevation Satellite</td>
</tr>
<tr>
<td>InSAR</td>
<td>Interferometric synthetic aperture radar</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>IRS</td>
<td>Indian Remote Sensing</td>
</tr>
<tr>
<td>Landsat</td>
<td>Land Remote-Sensing Satellite</td>
</tr>
<tr>
<td>LandTrendr</td>
<td>Trends in Disturbance and Recovery</td>
</tr>
<tr>
<td>Lidar</td>
<td>Light Detection and Ranging</td>
</tr>
<tr>
<td>LISS</td>
<td>Linear imaging and self-scanning sensor</td>
</tr>
<tr>
<td>LTDR</td>
<td>Long Term Data Record</td>
</tr>
<tr>
<td>M3</td>
<td>Monitoring, mapping and modeling</td>
</tr>
<tr>
<td>MERIS</td>
<td>MEdium Resolution Imaging Spectrometer</td>
</tr>
<tr>
<td>MESMA</td>
<td>Multiple Endmember Spectral Mixture Analysis</td>
</tr>
<tr>
<td>MIR</td>
<td>Middle infrared</td>
</tr>
<tr>
<td>MIRBI</td>
<td>Mid-infrared burn index</td>
</tr>
<tr>
<td>MODIS</td>
<td>Moderate Resolution Imaging Spectroradiometer</td>
</tr>
<tr>
<td>MSI</td>
<td>Multispectral Instrument</td>
</tr>
</tbody>
</table>

58
References

deVries, B., Vennema, H., de Koeijer, L., de Vries, H., Verburg, P.H., 2018. ALandTrendr

deVries, B., Vennema, H., de Koeijer, L., de Vries, H., Verburg, P.H., 2018. ALandTrendr

deVries, B., Vennema, H., de Koeijer, L., de Vries, H., Verburg, P.H., 2018. ALandTrendr

deVries, B., Vennema, H., de Koeijer, L., de Vries, H., Verburg, P.H., 2018. ALandTrendr

deVries, B., Vennema, H., de Koeijer, L., de Vries, H., Verburg, P.H., 2018. ALandTrendr

deVries, B., Vennema, H., de Koeijer, L., de Vries, H., Verburg, P.H., 2018. ALandTrendr

deVries, B., Vennema, H., de Koeijer, L., de Vries, H., Verburg, P.H., 2018. ALandTrendr

deVries, B., Vennema, H., de Koeijer, L., de Vries, H., Verburg, P.H., 2018. ALandTrendr

deVries, B., Vennema, H., de Koeijer, L., de Vries, H., Verburg, P.H., 2018. ALandTrendr

deVries, B., Vennema, H., de Koeijer, L., de Vries, H., Verburg, P.H., 2018. ALandTrendr

deVries, B., Vennema, H., de Koeijer, L., de Vries, H., Verburg, P.H., 2018. ALandTrendr

deVries, B., Vennema, H., de Koeijer, L., de Vries, H., Verburg, P.H., 2018. ALandTrendr

deVries, B., Vennema, H., de Koeijer, L., de Vries, H., Verburg, P.H., 2018. ALandTrendr

deVries, B., Vennema, H., de Koeijer, L., de Vries, H., Verburg, P.H., 2018. ALandTrendr

deVries, B., Vennema, H., de Koeijer, L., de Vries, H., Verburg, P.H., 2018. ALandTrendr

deVries, B., Vennema, H., de Koeijer, L., de Vries, H., Verburg, P.H., 2018. ALandTrendr

deVries, B., Vennema, H., de Koeijer, L., de Vries, H., Verburg, P.H., 2018. ALandTrendr

deVries, B., Vennema, H., de Koeijer, L., de Vries, H., Verburg, P.H., 2018. ALandTrendr

deVries, B., Vennema, H., de Koeijer, L., de Vries, H., Verburg, P.H., 2018. ALandTrendr

deVries, B., Vennema, H., de Koeijer, L., de Vries, H., Verburg, P.H., 2018. ALandTrendr

deVries, B., Vennema, H., de Koeijer, L., de Vries, H., Verburg, P.H., 2018. ALandTrendr

deVries, B., Vennema, H., de Koeijer, L., de Vries, H., Verburg, P.H., 2018. ALandTrendr

deVries, B., Vennema, H., de Koeijer, L., de Vries, H., Verburg, P.H., 2018. ALandTrendr

deVries, B., Vennema, H., de Koeijer, L., de Vries, H., Verburg, P.H., 2018. ALandTrendr

deVries, B., Vennema, H., de Koeijer, L., de Vries, H., Verburg, P.H., 2018. ALandTrendr

deVries, B., Vennema, H., de Koeijer, L., de Vries, H., Verburg, P.H., 2018. ALandTrendr

deVries, B., Vennema, H., de Koeijer, L., de Vries, H., Verburg, P.H., 2018. ALandTrendr

deVries, B., Vennema, H., de Koeijer, L., de Vries, H., Verburg, P.H., 2018. ALandTrendr

