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A B S T R A C T

This paper presents a burned area mapping algorithm based on change detection of Sentinel-1 backscatter data
guided by thermal anomalies. The algorithm self-adapts to the local scattering conditions and it is robust to
variations of input data availability. The algorithm applies the Reed-Xiaoli detector (RXD) to distinguish
anomalous changes of the backscatter coefficient. Such changes are linked to fire events, which are derived from
thermal anomalies (hotspots) acquired during the detection period by the Moderate Resolution Imaging
Spectroradiometer (MODIS) and the Visible Infrared Imaging Radiometer Suite (VIIRS) sensors. Land cover maps
were used to account for changing backscatter behaviour as the RXD is class dependent. A machine learning
classifier (random forests) was used to detect burned areas where hotspots were not available. Burned area
perimeters derived from optical images (Landsat-8 and Sentinel-2) were used to validate the algorithm results.
The validation dataset covers 21 million hectares in 18 locations that represent the main biomes affected by fires,
from boreal forests to tropical and sub-tropical forests and savannas. A mean Dice coefficient (DC) over all
studied locations of 0.59 ± 0.06 ( ± confidence interval, 95%) was obtained. Mean omission (OE) and com-
mission errors (CE) were 0.43 ± 0.08 and 0.37 ± 0.06, respectively. Comparing results with the MODIS based
MCD64A1 Version 6, our detections are quite promising, improving on average DC by 0.13 and reducing OE and
CE by 0.12 and 0.06, respectively.

1. Introduction

Fire is one of the natural agents that most alter terrestrial ecosys-
tems and has a key ecological role in a large part of the Earth's surface.
Fires may have local to global effects as they reduce soil fertility,
change water supply, increase biodiversity loss and negatively influence
carbon sequestration (Hoffmann et al., 2002; Van der Werf et al., 2010;
Hansen et al., 2013; Bond et al., 2005; Aponte et al., 2016; Pausas &
Paula, 2012; Lavorel et al., 2007). Fires may also alter global bio-
chemical cycles by modifying the emitted greenhouse gases (GHGs) and
aerosols presence in the atmosphere (Van Der Werf et al., 2017;
Andreae & Merlet, 2001; Bowman et al., 2009). Annual global estimates
of carbon emissions from forest fires are quite variable. Van der Werf
et al. (2010) place them between 1.6 and 2.8 PgC per year, which is
equivalent to 20 to 30% of the global carbon emissions generated by
burning fossil fuels (Kloster et al., 2012; Flannigan et al., 2009).
However, other authors estimate fire related emissions at 2 to 4 PgC per
year, the equivalent of up to 50% of fossil fuel emissions (Bowman
et al., 2009). Regardless of the actual value, changes in global burned

area (BA) remains an important source of interannual variability of
atmospheric carbon concentration. Direct relationships between global
warming and the frequency of fires at the global level imply a positive
feedback process with sufficient potential to be a key factor in climate
change (Flannigan et al., 2009; Hoffmann et al., 2002; Knorr et al.,
2016). Although the current understanding of all these interactions is
limited (Krawchuk et al., 2009), increased carbon concentration in the
atmosphere may reinforce the effect of climate on fire frequency and
intensity (Langenfelds et al., 2002; Flannigan et al., 2006). Such in-
creases are spatially variable. Furthermore, some areas may not ex-
perience changes with respect to current fire regimes, while others may
even experience reduced fire occurrence (Flannigan et al., 2009; Kloster
et al., 2012; Andela et al., 2017).

Given the relationship between the fire regime and climate, the
Global Climate Observing System (GCOS) considers fire disturbance as
an Essential Climatic Variable (ECV). An ECV is a physical, chemical,
biological or a group of linked variables that contributes in a critical
way to the characterization of the climate system, being key to study
and predict its evolution (Bojinski et al., 2014). The origin of ECVs
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dates back to the 1990s, when gaps in climate knowledge and the re-
duction of observation networks in many countries led GCOS to develop
the ECV concept to simplify the study of climate through systematic
observations of a limited set of variables with great climatic importance
using satellite remote sensing data (Hollmann et al., 2013; Bradley
et al., 2012). In 2010, the European Space Agency (ESA) started the
Climate Change Initiative (CCI) programme as the main contribution of
the Agency to the GCOS agenda. The CCI programme aims to obtain
information on different ECVs using remote sensing data to help in
improving climate modelling (Plummer et al., 2017; Hollmann et al.,
2013). Fire Disturbance is one of the ECV included in the first phase of
the CCI programme initiated in 2010. The goals of this project were to
produce long-term and consistent time series of global BA information
(Chuvieco et al., 2016). The interest of global BA products for climate
modelling has been reviewed by several authors (Mouillot et al., 2014;
Poulter et al., 2015). And many global BA products have been released
over the last years (Humber et al., 2018). Three such products were
based on data from the NASA's Moderate Resolution Imaging Spectro-
meter (MODIS) sensor, the MCD45 (Roy et al., 2008), the MCD64
(Giglio et al., 2009, 2018) and the MODIS Fire_cci v5.0 (Chuvieco et al.,
2018). Images acquired by the VEGETATION sensor on board the SPOT-
4 (Satellite Pour Observation de la Terre) satellite have also been used
to generate global BA products, namely the Global Burnt Area (GBA)
2000 (Tansey et al., 2004), Globcarbon (Plummer et al., 2006), L3JRC
(Tansey et al., 2008) and the Copernicus Global Land Service Burnt
Area (based on Proba-V since 2014: land.copernicus.eu/global/
products/ba). Furthermore, the European Remote Sensing Satellite -
Advanced Along Track Scanning Radiometer (ERS2-ATSR2) was used to
generate the Globscar product (Simon et al., 2004) while the MEdium
Resolution Imaging Spectrometer (MERIS) data were used to generate
the Fire_cci v4.1 product (Alonso-Canas & Chuvieco, 2015; Chuvieco
et al., 2016). All these products were obtained using passive remote
sensing datasets (optical and thermal wavelengths) which have sig-
nificant limitations in areas with persistent cloud cover. Another lim-
itation comes from the relatively coarse (> 250 m) spatial resolutions
of these sensors, which makes the detection of small fires difficult
(Stroppiana et al., 2015a; Randerson et al., 2012).

Several factors limit burned area mapping from remote sensing
data. These factors are related to both, the sensor characteristics and
the observed scene. The type of sensor (passive or active) and the region
of the electromagnetic spectrum in which the images are acquired are
decisive in the success of the burned area detection. Among the scene
characteristics influencing detection accuracy, the size and shape of fire
patches, land cover type, fire unrelated changes (e.g., phenology,
floods, harvest, insects) and the presence of clouds (optical and thermal
part of the spectrum) are the most relevant. Since sensor and scene
related factors interact, the degree to which each of the mentioned
factors affect BA detection success varies (Eva & Lambin, 1998;
Boschetti et al., 2004; Belenguer-Plomer et al., 2018a; Padilla et al.,
2015). The spatial and temporal resolutions of the sensor have a sig-
nificant impact on BA mapping accuracy, determining the minimum
size of the fires that can be detected (Boschetti et al., 2004) and the time
interval between fire and detection (Eva & Lambin, 1998). However,
previous studies suggest that temporal resolution is less important than
the spatial resolution when it comes to the accuracy of the BA detection
(Boschetti et al., 2010).

In a survey based on a questionnaire of 47 researchers who used BA
products and an extended literature review, Mouillot et al. (2014)
suggested that BA products should have commission errors (CE) in the
range of 4% (ideal) to 17 % (maximum) while omission errors (OE)
above 19% were deemed less useful for the climate modelling efforts. A
first global comparison analysis found that the NASA's MCD64 was the
most accurate BA product (Padilla et al., 2015), but was far from
achieving these goals with CE and OE reaching 42% and respectively
68%. These errors were in part due to the low spatial resolution which
results in small fires being overlooked (Randerson et al., 2012). A

recent study has demonstrated that the contribution of small fires may
be in fact even greater, as comparing Sentinel-2 and MODIS products
for Africa showed an underestimation of almost 45% of BA (Roteta
et al., 2019). Therefore, the development of new BA detection algo-
rithms is a relevant research topic in the current context where climate
change is a key issue. To achieve this improvement, the use of images
from new satellites, such as those of the Copernicus missions of ESA, is
necessary. Furthermore, alternative mapping options (e.g., radar based)
are needed over areas where optical images are limited by persistent
cloud cover (e.g., tropical areas).

During the last decade, synthetic aperture radar (SAR) data have
been increasingly used for BA mapping as data from multiple sensors
became available. Such studies have taken advantage of radar in-
dependence of cloud cover and solar illumination, their increased
spatial resolution and the availability of multiple polarizations and
incidence angles (Bourgeau-Chavez et al., 2002; French et al., 1999).
The European Remote Sensing (ERS) SAR satellites (ERS-1 and ERS-2)
were widely used in boreal (Bourgeau-Chavez et al., 1997; Kasischke
et al., 1994), tropical (Siegert & Hoffmann, 2000; Siegert & Ruecker,
2000; Ruecker & Siegert, 2000) and Mediterranean (Gimeno et al.,
2004, 2002) ecosystems to detect and map BA. More recently, RADA-
RSAT (Gimeno & San-Miguel-Ayanz, 2004; French et al., 1999) and
ALOS - PALSAR (Advanced Land Observation Satellite Phased Array
type L-band Synthetic Aperture Radar) (Polychronaki et al., 2013) were
employed for the same purpose. However, past SAR missions only
provided data with low temporal resolution which hindered the de-
velopment of efficient radar-based BA detection and mapping algo-
rithms over large areas. In addition, the utility of past sensors was
limited by the available polarizations (mostly single co-polarized sen-
sors), steep viewing geometries (far from ideal when monitoring
changes in vegetation) and data access restrictions.

With the launch of ESA's Sentinel-1 satellite constellation (A and B
platforms, operational since October 2014 and December of 2015, re-
spectively) such limitations have been largely reduced. The Sentinel-1
constellation could theoretically provide images every three days by
combining datasets acquired during ascending and descending trajec-
tories. The independence from cloud cover and solar illumination,
added to improvements in sensors characteristics (e.g., dual polariza-
tion, increased spatial resolution and incidence angle, precise orbital
information), provides untapped opportunities for BA detection. A few
studies have already explored the potentials of Sentinel-1 SAR images
for BA detection, but these studies are focused on specific regions
(Engelbrecht et al., 2017; Lohberger et al., 2018). To date, few studies
tried integrating active and passive datasets for BA detection. Such a
study detected BA independently from Sentinel-1 and Sentinel-2 data-
sets on a relatively small area in the Congo basin suggesting that a
combined sensor approach compensates for the strengths and limita-
tions of each individual sensor (Verhegghen et al., 2016). However,
SAR based BA detection has limitations as discussed in more detail in
Subsection 3.2. Lastly, fusion approaches combining optical and radar
data have been considered for BA detection. In Stroppiana et al.
(2015b,a) Landsat-5 TM and C-band ENVISAT ASAR data were in-
tegrated into a fuzzy algorithm aimed at burned area detection in a
Mediterranean environment.

This paper presents a novel radar-based BA mapping algorithm
based on temporal series of C-band backscatter coefficient, that self-
adapts to local scattering conditions and it is able to detect small fires
(down to 1 ha) in a fairly automatic way. The specific objectives of this
study were to: (i) present the proposed algorithm and explain its
functionalities; (ii) validate the BA detections over major biomes; (iii)
compare the detection accuracy with that of existing products based on
passive datasets; and (iv) analyse the factors influencing the algorithm
accuracy.
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2. Study area and dataset

The algorithm was developed using data from four sites, three lo-
cated in the Amazon basin and one located in the Iberian Peninsula.
Subsequently, the algorithm was validated over 18 sites around the
world (Fig. 1). The validation areas were located within biomes where
fire events occur frequently, from boreal forests to tropical and sub-
tropical forests, savannas and grasslands.

The algorithm relies on temporal series of Ground Range Detected
(GRD) dual-polarized (vertical-vertical VV, and vertical-horizontal VH
polarizations) SAR images acquired by the Sentinel-1 A/B satellites in
interferometric wide (IW) swath mode. The GRD data was processed on
a tile base structure using as grid the 100 × 100 km Military Grid
Reference System (MGRS). For each tile, Sentinel-1 images from as-
cending and descending passes (when available) and from all inter-
secting relative orbits were used. Land cover (LC) classification and
hotspots derived from thermal anomalies were used as ancillary data.

The land cover classification was produced in the framework of the
ESA's Land_Cover_cci project. This project delivers time series of con-
sistent global LC maps at 300 m spacing on an annual basis from 1992
to 2015. The most recent map (i.e., 2015) was used. CCI land cover
maps were generated using a combination of sensors, including MERIS
and Proba-V time series of surface reflectance (Kirches et al., 2014).
Since the SAR images were processed at a significantly higher pixel
spacing (40 m, see Subsection 3.1) than the LC map, the latter was re-
sized using a nearest-neighbour interpolation to coincide with the SAR
spacing. In addition, the Land Cover Classification System (LCC) (Di
Gregorio, 2005) was simplified by joining similar cover types into six
groups: shrublands, grasslands, forests, crops, non-burnable, and
others. One should notice that BA detection takes place over 100 × 100
km tiles. Therefore, for any given tile, the simplified LCC classification
groups very similar classes.

Hotspots were available from NASA's Fire Information for Resource
Management System (FIRMS). The hotspots were recorded by two
sensors, the VIIRS (Visible Infrared Imaging Radiometer Suite) sensor at
375 m spatial resolution (Schroeder et al., 2014) and the MODIS sensor
at 1 km spatial resolution (Giglio et al., 2003). The VIIRS and MODIS
database was last accessed in January 2018.

To derive the validation fire perimeters (see Subsection 3.4 for more

details), Landsat-8 optical images were retrieved from the United States
Geological Survey repository (USGS) as atmospherically corrected
surface reflectance products (Vermote et al., 2016). The validation
period was adjusted for each tile considering the fire season length and
the availability of Landsat images with a cloud cover under 30%.
Sentinel-2 Level-1C images retrieved from the Copernicus Open Access
Hub were considered to reduce temporal gaps in the validation dataset
and thus large discrepancies between the validation period and the
Sentinel-1 detection period.

The effect of soil moisture, an important factor affecting radar
backscatter, on BA detection accuracy was analysed using the global
Soil Moisture Active Passive (SMAP) product. Specifically, the
Enhanced Level 3 Passive Soil Moisture Product based on L-Band
Radiometer (9 km pixel spacing and 3 days revisit period) was used.
The reliability of this product was demonstrated by a correlation
coefficient above 0.8 between the estimated soil moisture and in situ
measurements (Chan et al., 2018; Chen et al., 2018). From this product,
the descending pass images (6 AM Equator crossing), more accurate
than ascending according to Chan et al. (2018), were used so that all
measurements represented the same acquisition time (Chan, 2016). As
for the LC map, the product was resized to 40 m using the nearest-
neighbour interpolation.

3. Methods

3.1. SAR data pre-processing

The Sentinel-1 data was processed using open-source libraries
available in the Orfeo ToolBox (OTB), an image processing software
developed by the National Centre for Space Studies (CNES), France
(Inglada & Christophe, 2009). The OTB-based processing chain uses
Ground Range Detected (GRD) Sentinel-1 images with the SAR data
being tiled to 100 km using the MGRS system. The chain is highly
scalable and autonomous once few parameters are set and includes the
data download from Sentinel-1 repositories. The SAR data processing
may be grouped in several steps including, pre-processing, geocoding
and temporal filtering (Fig. 2).

The pre-processing step includes data download of the specified
MGRS tiles and radiometric normalization to gamma nought (γ0) using
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Fig. 1. Location of the Military Grid Reference System tiles used for algorithm development and validation.

Fig. 2. SAR data processing with the Orfeo Toolbox.

M.A. Belenguer-Plomer, et al. Remote Sensing of Environment 233 (2019) 111345

3

https://www.esa-landcover-cci.org/
https://firms.modaps.eosdis.nasa.gov/
https://www.usgs.gov/
https://www.orfeo-toolbox.org/
https://cnes.fr/en


the gamma nought lookup table provided in the product metadata.
Only SAR images acquired in the interferometric wide swath mode, the
Sentinel-1 default acquisition mode over land, were used. The cali-
brated images were orthorectified to ground geometry using elevation
information from the Shuttle Radar Topography Mission (SRTM) one
arc-second DEM and the bicubic interpolator. The orthorectified images
were clipped to the processing tile and the data acquired from the same
orbital path but provided within different slices were mosaicked (i.e.,
slice assembly). It should be noted that the BA algorithm uses temporal
backscatter differences of the same relative orbit, hence, terrain-flat-
tening (Small, 2011; Frey et al., 2013) was not necessary as the DEM-
derived normalization (illumination) area for a given pixel is constant
in time thus not affecting the pre- to post-fire backscatter coefficient
variations (Tanase et al., 2010c, 2015, 2018). The last step was a multi-
temporal filtering of the products for each satellite pass (Quegan et al.,
2000). The GRD data were processed to the nominal Sentinel-1 re-
solution (20 m) through the OTB based chain.

The BA detection algorithm deployment over large areas is condi-
tioned by its performance (speed) and accuracy. Both parameters are
influenced by the pixel spacing to which products are processed as
omission and commission errors are highly depended on speckle while
the processing speed increases with decreasing pixel size. Analysing the
effect of pixel spacing on image radiometric properties, processing time
and BA detection accuracy were essential for selecting the optimum
pixel spacing for deployment. Tanase & Belenguer-Plomer (2018) car-
ried out an analysis for four pixel spacing (i.e., 20, 30, 40 and 50 m)
over two test tiles. A 40 m spacing provided the optimum trade-off
between speckle reduction, storage and computing requirements and
the accuracy of the detected BA. Therefore, the temporally filtered
images were aggregated to 40 m.

Radio Frequency Interference (RFI) may contaminate SAR data.
Since RFI are largely observed over highly populated urban areas (Li
et al., 2004; Njoku et al., 2005, Lacava et al., 2013) and considering
that burned areas are usually located away from large cities, such ef-
fects were not observed and consequently were not considered.

3.2. Backscatter behaviour in burned areas

To better understand the proposed algorithm, its development, and
the decision-making process that shaped it, this subsection describes the
behaviour of C-band backscatter coefficient after fire events.

Fire on vegetated areas results in variations of the backscatter
coefficient, which may increase or decrease depending on the polar-
ization, the remaining vegetation and the environmental conditions
(i.e., rainfall) during SAR data acquisition. Fire consumption reduces
the number of vegetation scattering elements potentially reducing the
backscatter coefficient (Van Zyl, 1993; Antikidis et al., 1998). However,
biomass consumption may increase scattering from the ground due to
reduced signal attenuation (less vegetation) and the increased effect of
soil surface properties, such as moisture and roughness (Tanase et al.,
2010b). Hence, microwaves backscatter behaviour in areas affected by
fires may be more heavily influenced by soil moisture properties when
compared to unburned areas, particularly when rainfall occurs after the
fire (Imperatore et al., 2017; Gimeno & San-Miguel-Ayanz, 2004;
Ruecker & Siegert, 2000). Rain and melting snow are the main causes of
increased soil moisture (Huang & Siegert, 2006), influencing the radar
signal and consequently reducing C-band sensitivity to fire induced
changes (Tanase et al., 2010b). SAR-based BA mapping may be further
hindered by spatial changes in soil moisture due to fire unrelated fac-
tors (e.g., temperature, insolation, wind, slope and orientation, soil
roughness) which are difficult to embed into detection algorithms. The
local incidence angle (LIA) is yet another factor influencing C-band
sensitivity to fire induced changes, with smaller LIA values providing
increased burned to non-burned differentiation for co-polarized waves
(Gimeno & San-Miguel-Ayanz, 2004; Huang & Siegert, 2006; Tanase
et al., 2010b). Finally, wave polarization is also a fundamental variable,

with cross-polarized waves being more sensitive to changes in vegeta-
tion (volumetric scattering) and less to surface properties (e.g., soil
moisture and roughness) when compared to the co-polarized waves
(Freeman & Durden, 1998; Yamaguchi et al., 2005; Van Zyl et al.,
2011). Such contrasting effects may generate a wide range of possible
backscatter variations over burned areas that depend on the interplay
between the SAR sensor characteristics (e.g., wavelength, polarization,
incidence angle) and environmental conditions at SAR acquisition (e.g.,
fire impact, soil surface properties, meteorological conditions).

The impact of fire on the backscattering coefficient was actually
found to cause ambiguous effects. A strong backscatter decrease was
found for burned tropical forests at C-band VV polarization under dry
weather conditions due to the decreased volume scattering and in-
creased heat flux, which led to a dryer ground (Ruecker & Siegert,
2000; Lohberger et al., 2018). After rainfall, discrimination from the
unburned surrounding forests was difficult as the backscatter coeffi-
cient over BA increased (Siegert & Ruecker, 2000). In the temperate
region and the Mediterranean basin, lower backscatter values were
found in fire-affected areas for cross-polarized C-band when compared
to adjacent unburned forest (Rignot et al., 1999; Imperatore et al.,
2017). In boreal forests, higher backscatter values, when compared to
the adjacent unburned areas, were observed at C-band VV polarization
when soil moisture was high, whereas lower backscatter was observed
for sites with better drainage (Bourgeau-Chavez et al., 2002; Huang &
Siegert, 2006; Kasischke et al., 1994). In Australian woodlands and
open forests, the post-fire backscatter increased for co-polarized waves
and decreased for cross-polarized waves (Menges et al., 2004) while for
African open forests the backscatter decreased for both co- and cross-
polarized C-band channels, although only the co-polarized channel was
deemed useful for BA detection (Verhegghen et al., 2016). Changes in
the post-fire backscatter levels appear to be strongly related to changes
in soil moisture, with data acquired after rainfall being less suitable for
classification or biophysical parameters retrieval. However, some fire-
related studies reported increased differentiation potential for BA after
rainfall in the Mediterranean basin (Gimeno & San-Miguel-Ayanz,
2004).

3.3. Burned area detection and mapping algorithm

The main requirements of the BA detection algorithm were: (i) the
use of cloud insensitive satellite data (i.e., SAR); (ii) sensitivity to local
burn conditions; and (iii) a high degree of automation. The algorithm
was designed to make use of existing datasets for training purposes by
using sets of susceptible burned and unburned pixels for locally domi-
nant land cover types. The algorithm has six stages with its simplified
structure being provided in Fig. 3. The following paragraphs explain in
detail each stage.

3.3.1. Stage 1: Anomaly change detection
An anomalous change implies variations outside the typical beha-

viour expected for a given area and time. Burned areas were considered
anomalies since fires are inconsistent spatial and temporal events. The
Reed-Xiaoli detector (RXD), proposed by Reed & Yu (1990), extracts
signatures that are distinct from the surroundings without the need for
a priori information. Anomalies have two characteristics that make
them outliers: (i) spectral signatures different from the surrounding
pixels; and (ii) low occurrence probability (Stein et al., 2002; Banerjee
et al., 2006; Kwon & Nasrabadi, 2005). Hence, RXD allows distin-
guishing anomalous changes, such as burned areas, from pervasive
changes (e.g., seasonal effects) that occur periodically and extend over
large swathes of the image (Theiler & Perkins, 2006). The RXD uses the
covariance matrix to calculate the Mahalanobis distance from a given
pixel to the mean of the surrounding (background) pixels (Dabbiru
et al., 2012). Thus, for any given pixel, the anomalous change (AC)
score is computed by the RXD (Eq. (1)).
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=x x µ C x µAC( ) ( ) ( )1 (1)

where x is any given pixel, x′ is a vector formed by the image bands
values of the pixel x, μ is a vector composed of the mean value of the
background pixels (e.g., stable areas) in each image band and C is the
covariance matrix of the image bands (computed from the background
pixels). The background value may be computed as the mean sample of
a subset image where only pixels of the same land cover class of x are
included to differentiate anomalous changes from pervasive, since
seasonal effects and soil moisture variations may affect the backscatter
coefficient in a divergent way as a function of land cover class. When a
priori information is available, the background value may be computed
from areas where anomalies are not expected. For BA detection, a priori
information was provided by MODIS and VIIRS active fire databases.
MODIS and VIIRS hotspots corresponding to the current detection
period (CDP) were used to mask areas likely affected by fires while the
remaining pixels were used to calculate the background values. The BA
masks were derived by taking a buffer of 0.75 km around each hotspot.
This buffer was considered the influence area of each individual hotspot
(IAhs) and it roughly corresponds to the pixel size for VIIRS and MODIS
thermal channels while also considering location uncertainty.

The RXD was applied to a set of temporal ratios of the backscatter
coefficient (Eqs. (2) and (3)). Such temporal indices were previously
used for estimating the impact of different disturbance agents (e.g., fire,
insects, wind) on vegetation (Tanase et al., 2015, 2018). The selected
temporal radar indices mainly use the VH backscatter, which is more
responsive to volumetric scattering from vegetation and less affected by
changes in surface properties (e.g., soil moisture, surface roughness)
when compared to the co-polarized (VV polarization) channel (Freeman
& Durden, 1998; Yamaguchi et al., 2005; Van Zyl et al., 2011).

=RI VH / VH1 t 1 t+1
0 0 (2)

=RI VH / VV / VH / VV( ) ( )2 t 1 t 1 t+1 t+1
0 0 0 0 (3)

where γ0 is the backscatter coefficient (linear scale) of VV or VH po-
larizations, and t− 1 and t+ 1 are respectively pre- and post-fire de-
tection dates that define the CDP.

To reduce commission errors related to signal variation due to
changes associated to post-fire events (e.g., vegetation regrowth), the
AC values for CDP were modulated by the AC values recorded for the
previous detection period (PDP) (Eq. (4)). Practically, AC scores of the
PDP were subtracted from the AC of the CDP. The result was a Modu-
lated Anomalous Changes (MAC) score used in all subsequent algorithm
stages.

=x x xMAC( ) AC( ) AC( )[t 1..t+1] [t 2..t 1] (4)

3.3.2. Stage 2: Burned and unburned regions of interest
In this stage, burned and unburned Regions of Interest (ROIs) were

automatically extracted using the MAC scores and ancillary information
from hotspots and land cover data. Since information on hotspots was
acquired daily from two independent sensors (VIIRS and MODIS) most

burned pixels in the selected study areas (94.3%) were in fire patches
with at least one hotspot within 0.75 km, the selected buffer considered
as hotspot area of influence (IAhs) even for the tropical regions, where
cloud cover is frequent. The presence of hotspots greatly facilitated the
attribution of the detected MAC values to burned areas. This allowed
distinguishing BA from other changes, such as logging, crop harvesting,
flooding, or vegetation disturbance due to insects or diseases. When
hotspots were not available, due to the cloud cover or small fire size, a
different attribution method was used as explained in Stage 4. Burned
ROIs (bROIs) were extracted in two steps: seeding and growing. This is
an approach previously used for BA mapping algorithms (Bastarrika
et al., 2011; Alonso-Canas & Chuvieco, 2015; Roteta et al., 2019). To
obtain the seeds, spatially connected IAhs pixels were first grouped in
uniquely identified objects: q1:n, where n is the number of the unique
objects. A pixel x inside an object q, was considered burned seed
(bSeed) if Eq. (5) was met.

=
>

> <

x q
x s v x

s v s v

bSeed( )
(MAC( ) min ( , ) 0) (MAC( )
max ( , ) 0 min ( , ) 0) (5)

where =s µ (MAC )q , μ being the mean and q′ a region around q
bounded by distq and dist + distq q , with distq being the maximum span
of object q. Thus, q′ delineates likely unburned areas in the vicinity of q;
and N=v µ (MAC )G , with NG being the neighbour pixels of G, where G
is a pool of pixels inside q with MAC values below µ (MAC )q . Essen-
tially, for a pixel to be considered seed it had to fulfil two conditions,
one related to vicinity to a hotspot (within IAhs) and the second related
to the magnitude of backscatter change (MAC score).

The bSeed pixels were extracted considering the major land cover
type for each q object. Therefore, pixels in q′ region were stratified by
land cover type with only pixels of the same land cover type as pre-
dominant of q being used for computations. In addition, the selected q′
pixels needed to be outside the IAhs of any other hotspot. Fig. 4 shows
graphically the concepts of q, q′ and distq. Once bSeed pixels for q were
extracted, an open morphological operator (3 × 3 window) was used to
eliminate isolated bSeed pixels. With increasing window size, BA
omission errors increased while commission errors decreased. To de-
termine the optimum size, an error analysis was carried out using dif-
ferent window sizes (3 × 3, 5 × 5 and 7 × 7) over the four algorithm
development tiles (analysis not shown). The 3 × 3 window was selected
since it least affected the detection of small size fires while still
managing to reduce commission errors. The same window size was used
in previous works to reduce speckle effects (Menges et al., 2004).

Given an object q and its predominant land cover class k, the
growing phase started by masking out all the pixels of the image which
MAC values were below the mean MAC value of all image pixels of land
cover class k. The remaining pixels were used to compute a new mean
of the MAC values which was used as the minimum threshold to label
Likely Burned Pixels (LBP) of q (Eq. (6)).

=x q x > µ MAC > µ MACLBP( ) MAC( ) ( ( ))k (6)

Fig. 3. Flowchart of the SAR based algorithm for burned area detection.
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Connected LBP(q) pixels were grouped and subsequently overlapped
with the extracted bSeed pixels of q. LBP(q) groups overlapping bSeed
pixels of q were assigned to the bROIs and constituted the first com-
ponent of the detected burned areas. The second component was de-
tected using no parametric classification (i.e., random forests) as ex-
plained in Stage 4.

The unburned ROIs (uROIs) were derived iteratively by land cover
type. The histogram of bROIs pixels identified in the previous step was
used to calculate the MAC values for the 25 and 75 percentiles (P25 and
P75, respectively). These values constituted thresholds used to classify
the MAC image in burned and unburned. Pixels with MAC values below
P25 or above P75 were considered possible unburned seeds since: (i)
MAC values below P25 indicate small changes, likely unrelated to fires
(e.g., vegetation growth, changes in vegetation water content); and (ii)
MAC values above P75 are usually associated with significant changes,
such as logging, crop harvesting, or floods. One should note that, high
severity fires may also result in MAC values above P75. However, such
areas are regularly associated to hotspots and therefore were not la-
belled as uROIs. An open morphological operator (3 × 3 window) was
applied to the classified binary image to remove noise. The effect of the
open morphological operator was an increased number of unburned
pixels. Pixels from the not burnable LC map classes (i.e., bare soils,
water, snow and ice, urban areas) were labelled as uROIs, while pixels
overlapping IAhs or bROIs were filtered out. Additionally, for the crop
land cover class, groups of pixels over 56 ha (0.75 × 0.75 km, 0.75 km
being the double of VIIRS spatial resolution) not overlapping hotspots
were included as uROIs to account for fire-unrelated changes, such as
crop harvesting or changes in surface properties (roughness) due to
agricultural works (e.g., ploughing).

3.3.3. Stage 3: Adjustment for temporal decorrelation
During algorithm development, a temporal decorrelation between

fire events (i.e., hotspots date) and backscatter coefficient change was
observed (Belenguer-Plomer et al., 2018b). Such decorrelation events
may be the result of delayed backscatter decrease after fire due to
multiple factors including: (i) pre-fire conditions, e.g., drier than usual
weather may result in low values for the pre-fire backscatter coefficient;
(ii) post-fire weather, e.g., precipitations may temporally increase the
backscatter coefficient; and (iii) vegetation-dependent backscatter re-
sponse to fire events. For example, over forests, VH backscatter de-
crease may be delayed as there are still sufficient scattering elements

(tree trunks and branches) present after fire. As time passes, trunks and
branches dry up, which results in decreased backscatter from vegeta-
tion.

To account for temporal decorrelation the BA was detected itera-
tively for each period. Delayed changes in backscatter were accounted
for computing the bROIs detected in periods formed by the current pre-
fire image (t− 1) and images acquired during the following 90 days
past the CDP (i.e., t+ 2, t+ 3, ...). This temporal threshold was based
on empirical observations (Belenguer-Plomer et al., 2018b). Such bROIs
were labelled as burned in the CDP (t− 1 to t+ 1) when overlapping
hotspots from the CDP. Additionally, these bROIs must not overlap
hotspot recorded past the CDP.

3.3.4. Stage 4: Random forests burned/unburned classification
Only a fraction of the anomalous pixels was labelled as burned

based on information from hotspots due to the rather restrictive criteria
(i.e., MAC score) used in Stage 2 and 3. Pixels not meeting the imposed
criteria also needed labelling. To avoid subjectivity, such pixels were
labelled using a non-parametric classifier (i.e., random forests) trained
with data extracted from bROIs and uROIs by each land cover classes
and CDP. The random forests (RF) classifier was used as it is robust to
data noise (Gislason et al., 2006; Rodriguez-Galiano et al., 2012; Du
et al., 2015; Waske & Braun, 2009) and less sensitive, when compared
to other machine learning techniques, to the quality of training samples
and overfitting (Belgiu & Drăguţ, 2016). Moreover, RF was already used
to classify SAR data (Waske & Braun, 2009) and solve similar fire
mapping problems (Collins et al., 2018; Fernandez-Carrillo et al., 2018;
Ramo & Chuvieco, 2017; Meddens et al., 2016).

RF is an ensemble classifier that consists of a group of decision trees
=h zx{ ( , ), 1, ...}z , where x′ is the input vector of any given pixel (x),

and Θz are an independently bootstrap sampled vectors with replace-
ment in each decision tree (z). Each tree provides a unique class for x,
being the class of x assigned as the most popular voted class (Breiman,
2001). In this study, TreeBagger from MATLAB® software package was
used to construct the RF classifiers.

RF classifiers are customizable through different parameters, such
as: (i) number of trees; (ii) number of training samples; (iii) proportion
of training samples by class; and (iv) number of independent variables
employed in each tree. The number of trees is a key adjustment in RF
classification since for more trees the generalization error converges
and models are not over-fit (Breiman, 2001; Pal, 2005; Rodriguez-
Galiano et al., 2012). On the other hand, using more trees demands
more computational resources. An empirical analysis (not shown)
concluded that 250 trees provided the best trade-off between speed and
accuracy for BA classification in this study. Since the number of pixels
in bROIs and uROIs is high, computational costs may be reduced by
using just a fraction for training purposes. This fraction was de-
termined, by land cover classes, as 1% of all bROIs and uROIs pixels
divided by the number of trees (250). Unbalanced training samples may
result in infra-classification of the minority classes. According to Chen
et al. (2004), several approaches may be used to address such problems:
(i) reducing the overall learning cost, with high costs being assigned to
the miss-classification of the minority classes (Pazzani et al., 1994); (ii)
under-sampling the majority and over-sampling the minority classes; or
(iii) a combination of both techniques (Chawla et al., 2002). The latter
approach was used in this study. Depending on the misclassification
cost, the TreeBagger function generated in-bag samples by oversampling
the burned class and under sampling the unburned class. The propor-
tion of training data was empirically adjusted to 40% and 60% for
burned and unburned classes, respectively.

The number of variables considered for trees growing in each split
was computed as the square root of the total number of variables
(Gislason et al., 2006), as it reduces the correlation of trees and thus
improves global accuracy (Rodriguez-Galiano et al., 2012; Gislason
et al., 2006). In addition to the SAR based metrics used for RXD (Eqs.
(2) and (3)), up to 30 SAR metrics were used for RF classification. These

Fig. 4. Graphical representation of concepts needed to extract bROIs, being HS -
hotspot.
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metrics were computed as in Eqs. (7) to (12). The non-parametric
classification was carried out considering the land cover type with
specific models being built for each land cover class. The BA detected
by RF was added to bROIs detected in Stage 2 and 3, and formed the
total BA for the CDP.

µ XY XY( )[t ,t 1] t+i
0 0 (7)

µ XY / XY( )[t ,t 1] t+i
0 0 (8)

XY XYt 1 t+i
0 0 (9)

XY / XYt 1 t+i
0 0 (10)

VH / VV / VH / VV( ) ( )t 1 t 1 t+i t+i
0 0 0 0 (11)

µ VH / VV / VH / VV( ) ( )[t ,t 1] [t ,t 1] t+i t+i
0 0 0 0 (12)

where γ0XY is the backscatter intensity (linear scale) of VV and VH
polarizations, t′ is t− 1 minus the double of days distance between
t− 1 and t+ 1, and i is 1 or 2, 30 being the maximum number of
indices computed.

3.3.5. Stage 5: Post-processing
Post-processing was needed to account for temporal decorrelation

and improve detection results over problematic land covers such as
cropping areas. To adjust for temporal decorrelation, the BA detected
by the non-parametric classifier for the CDP was compared to the IAhs
of previous detection periods, up to 90 days before the pre-fire image
(t− 1) (Belenguer-Plomer et al., 2018b). If burned areas detected in the
current CDP (i.e., objects formed by contiguous pixels) overlapped
previous IAhs (objects) by more than 75% (set from empirical ob-
servations) they were masked out and considered previous burns. Three
additional post-processing steps were then carried out to further im-
prove the results: (i) on cropping lands, groups of burned pixels (ob-
jects) with areas above 56 ha (see Stage 2) that did not overlap IAhs
(i.e., no local hotspot) were removed. The rationale was that lack of
hotspots over a large changing cropping area is an indication of har-
vesting rather than fire; (ii) burned objects below one hectare were
removed to reduce noise in BA detections due to residual speckle; and
(iii) a modal filter with a convolution kernel of 3 × 3 pixels was applied
to smooth the salt and pepper effects typical for SAR based classifica-
tions.

Post-processing also deals with joining the BA detected in the dif-
ferent relative orbits intersecting a specific tile. The BA was detected
separately for each relative orbit, to avoid misinterpreting backscatter
changes due to changing azimuth angles or illumination geometry as
fire related changes. To reduce topographic related effects such as
layover, foreshortening and shadowing, burned areas detected in dif-
ferent relative orbits (i.e., from ascending and descending passes) were
joined to obtain the final BA maps.

3.3.6. Stage 6: Burned area detection without hotspots
As clouds may prevent the propagation of radiation from active fires

to the thermal sensors on board satellites, the algorithm was built with
a backup mechanism to cope with the absence of hotspots for a specific
land cover type and detection period. However, for the algorithm to
work, hotspots need to be available for each land cover class at some
point during the analysed fire season.

The algorithm first detected the BA for all land cover types during
detection periods for which hotspots were available. For detection
periods without hotspots, the data were temporally stored for later
processing. During detection, the algorithm saved a database con-
taining the P25 and P75 of MAC values for bROIs (Stage 2) and the
trained RF models (Stage 4) for each land cover class. This database is
hereafter referred to as the Classifier Model and Criteria (CMC). Once
detections for land cover classes and detection periods with hotspots
ended, the CMC database was used to classify the temporally stored

data (i.e., land cover types without hotspots during detection periods) if
two conditions were met: (i) the CDP was within the fire season. The
length of the fire season was computed using the hotspots daily fre-
quency as the interval between the dates corresponding to the P5 and
P95; and (ii) the difference between the CDP and the date for the nearest
CMC was less than one month, thus avoiding possible confusions due to
changes in vegetation phenology. When CMC entries from different
detection periods met the conditions, the one closest to the CDP was
used. The MAC image for the CDP was segmented into possibly burned
and unburned based on the CMC P25 and P75, with the possible burned
pixels being subsequently classified using the stored RF models by land
cover class. When CMC entries were spaced equally in time when
compared to the CDP (i.e., one entry is from a previous period and one
from a posterior period), each entry was used separately and only the
commonly detected BA was kept. The post-processing operations from
Stage 5 were carried out on the detected BA from this stage.

An additional operation was carried out to reduce possible com-
mission errors during this stage. The operation was carried out over BA
detected on different relative orbits. Note that detections were always
carried out using time-series of images from the same relative orbit. If
several relative orbits intersected a given tile, the algorithm worked
through the data from each relative orbit separately. BA products
composites were subsequently formed using detections from different
relative orbits and the same detection period. For each detection period,
BA pixels detected in different relative orbits were grouped in objects. If
all pixels of an object were classified as unburned in one orbit, the
object was removed from the detected BA for the CDP. Since, dual pass
(ascending and descending) acquisitions were not available for all tiles
and spatially overlapping relative orbits only partially covered any
given tile, this additional operation reduced commission errors where
BA detections intersected.

3.4. Reference images and validation metrics

The reference burned perimeters extraction for validation purposes
was based on a well established framework (Padilla et al., 2014, 2015,
2017). The reference data were obtained from Landsat-8 images using a
RF classifier and training polygons selected by an independent op-
erator. The validation perimeters were generated from 120 multi-tem-
poral pairs of images with a maximum separation of 32 days. The
temporal separation of the pairs was short to ensure that fire scars were
clearly visible in the post-fire image. Before running the classification,
clouds were removed using the pixel quality band of the Landsat pro-
duct and each pair of images was clipped to the extent of its corre-
sponding MGRS tile. Training areas were selected using a false colour
composite (RGB: SWIR, NIR, R) that allowed for a clear discrimination
of burned areas. Three training classes were considered: burned, un-
burned and no data.

The variables selected as input for the RF classifier were: (i)
Landsat-8 bands 4 and 7; (ii) the Normalized Burn Ratio (NBR); and (iii)
the temporal difference between the pre- and post-fire NBR values
(dNBR). The NBR (Eq. (13)) is defined as the normalized difference
between the reflectance of NIR and SWIR wavelengths (García &
Caselles, 1991; Key & Benson, 2006).

= +NBR (Band4 Band7)/(Band4 Band7) (13)

where Band 4 is the surface reflectance in the near infra-red (NIR)
wavelength (0.772–0.898 μm) and Band 7 is the surface reflectance in
the shortwave infra-red (SWIR) wavelength (2.064–2.345 μm).

After the RF classification, fire perimeters were visually revised to
correct possible errors. New training fields were iteratively added and
the RF was re-run until the classification results were deemed accurate.
Reference BA perimeters were resized using a nearest-neighbour in-
terpolation to the selected pixel spacing of the Sentinel-1 product
(40 m). Temporal gaps between the Landsat-8 reference period and the
Sentinel-1 detection period were filled in through photo-interpretation
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of Sentinel-2 images.
The Sentinel-1 BA detections were validated using confusion ma-

trices (Table 1). Three accuracy metrics were computed for the burned
area class using the confusion matrices, the omission error (Eq. (14)),
the commission error (Eq. (15)) and the Dice coefficient (Eq. (16))
(Padilla et al., 2015).

Table 1
Confusion matrix example.

Reference data

Detection Burned Unburned Row total

Burned P11 P12 P1+

Unburned P21 P22 P2+

Col. total P+1 P+2 N

= +P POE /21 1 (14)

= P /PCE 12 1+ (15)

= 2P / P + PDC ( )11 1+ +1 (16)

4. Results

4.1. Algorithm accuracy

The OE and CE over the validation tiles varied, with the highest
errors (0.54 to 0.81) being observed over Australian grasslands and the
lowest (0.19 to 0.2) over the Mediterranean forests and shrublands
(Table 2). The highest BA detection accuracy (DC 0.82) was observed
over the tile 22LQP located in the Amazon basin (Fig. 5). By land cover
type, the algorithm produces more accurate results over forested areas
(DC 0.64), followed by shrublands (DC 0.56). The lowest detection
accuracy was observed over grasslands (DC 0.28) (Fig. 6). Note that
error metrics by land cover type were computed by pooling pixels with
the same land cover type from all tiles.

4.2. Comparison with existing global products

The accuracy metrics of the Sentinel-1 BA detections obtained from
the presented algorithm were compared to those derived from the

current most widely used BA global product, the MCD64A1 Version 6
(Giglio et al., 2018). The magnitude of the error metrics may be in-
fluenced by the temporal match between the images used to generate
the reference perimeters and those used to generate the BA products. To
account for detection errors caused by slightly different validation and
detection periods, the MCD64A1 product was temporally subset to
match the Sentinel-1 detection periods.

The accuracy metrics were analysed by tile as well as by land cover
classes. The tile-based analysis showed particularly poor results for the
MCD64A1 product over the tiles 18NXG, 20LQQ, 20LQR, 30TYK,
33NTG, 33NUF and 33NUG (Fig. 6). For the remaining tiles, the ac-
curacy of the two BA detection algorithms was closely matched, with
some tiles being more accurately estimated by the Sentinel-1 algorithm
while others by the MCD64A1. By land cover class, the MCD64A1
achieved higher accuracies over grasslands while the Sentinel-1 de-
tections were considerably more accurate over forests. For the re-
maining land cover classes both products showed similar accuracies
over burned areas. Overall, the BA was more accurately detected using
the SAR based algorithm. On average Sentinel-1 detections improved
the DC of the MCD64A1 product from 0.46 ± 0.11 to 0.59 ± 0.06
( ± confidence interval, 95%) and reduced the OE from 0.55 ± 0.14 to
0.43 ± 0.08 and CE from 0.43 ± 0.08 to 0.37 ± 0.06 (Fig. 7).

4.3. Factors influencing the algorithm accuracy

The MAC values (Eq. (4)), and the temporal variation (pre- minus
post-fire date) of backscatter coefficient and soil moisture were ana-
lysed by land cover class for each Sentinel-1 temporal pair after the BA
classification. Four categories were studied: burned, unburned, com-
mission and omission errors. Data from all tiles were pooled (Fig 8). The
analysis confirmed that, over burned and commission error pixels, VH
backscatter mean variation was higher (1.72 ± 0.002 dB) when com-
pared to the VV polarization (0.34 ± 0.0023 dB) for all land cover
classes. As expected, MAC values were on average considerably higher
over burned pixels and commission errors (13.5 ± 0.15) when com-
pared to unburned and omission errors pixels (0.17 ± 0.03), following
the trends observed for VH backscatter coefficient mean variation. Soil
moisture variations from the SMAP product were very similar between
burned and unburned pixels with no particular trend being apparent.
For crops and shrubs soil moisture variations were slightly higher over
burned areas while for the other land cover classes the opposite was

Table 2
Error metrics for Sentinel-1 burned area detections for each MGRS tile analysed.

MGRS Reference period Detection period P Dd nIM LC C DC OE CE

10SEH 04/10/2017–05/11/2017 28/09/2017–03/11/2017 B 12 16 G NA 0.61 0.34 0.43
10UEC 05/07/2017–22/08/2017 08/07/2017–25/08/2017 B 12 32 F NA 0.76 0.31 0.16
18NXG 30/10/2016–02/03/2017 03/11/2016–03/03/2017 A 24 6 F SA 0.64 0.35 0.36
20LQP 20/07/2016–22/09/2016 03/07/2016–25/09/2016 D 84 4 F SA 0.82 0.14 0.22
20LQQ 04/07/2016–22/09/2016 03/07/2016–25/09/2016 D 36 5 F SA 0.55 0.42 0.48
20LQR 04/07/2016–25/09/2016 03/07/2016–25/09/2016 D 36 8 F SA 0.64 0.26 0.43
29TNE 05/10/2017–06/11/2017 04/10/2017–04/11/2017 B 6 24 S Eu 0.7 0.38 0.2
29TNG 05/10/2017–06/11/2017 04/10/2017–05/11/2017 B 6 24 S Eu 0.67 0.36 0.3
30SVG 30/06/2015–16/07/2015 26/06/2015–20/07/2015 B 12 9 S Eu 0.65 0.19 0.46
30TYK 12/06/2017–30/07/2017 10/06/2017–28/07/2017 B 12 26 S Eu 0.69 0.31 0.3
33NTG 28/11/2015–16/02/2016 21/11/2015–13/02/2016 A 12 14 F Af 0.63 0.47 0.21
33NUF 07/12/2015–23/12/2015 28/11/2015–22/12/2015 A 12 3 F Af 0.52 0.52 0.43
33NUG 21/11/2015–24/01/2016 16/11/2015–27/01/2016 A 12 8 F Af 0.52 0.52 0.44
36NXP 30/12/2016–15/01/2017 01/01/2017–26/01/2017 D 6 6 S Af 0.46 0.62 0.41
48VWL 12/06/2017–21/06/2017 11/06/2017–23/06/2017 D 12 3 F As 0.58 0.57 0.15
49MHT 02/07/2015–04/09/2015 26/06/2015–06/09/2015 D 24 5 O As 0.67 0.35 0.32
50JML 07/03/2017–10/05/2017 04/03/2017–15/05/2017 D 12 13 G Au 0.21 0.81 0.76
52LCH 05/04/2017–21/04/2017 26/03/2017–24/04/2017 D 12 7 S Au 0.31 0.78 0.51

Reference period - period for which the reference burn perimeter were derived; Detection period - first and last Sentinel-1 images of the data series; P - satellite pass
(A-ascending, D-descending, and B-both); Dd - day difference between images (mode); nIM - number of SAR images within the detection period; LC - predominant
land cover (G-grassland, S-shrub, F-forest, and O-others); C - continent for each tile (NA-North America, SA-South America, Eu-Europe, Af-Africa, As-Asia, and Au-
Australia); DC - Dice coefficient; OE - omission error; and CE - commission error.
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Fig. 5. Maps of burned area detected using Sentinel-1 data per MGRS tiles. Errors of omission and commission are also shown.
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true (Fig. 8).
Since the algorithm uses hotspots derived from thermal sensors to

map BA, the accuracies metrics (by land cover class) of the pixels lo-
cated within and outside the IAhs were also compared (Table 3). The
highest BA accuracy (DC) and lowest omission and commission errors
were observed for the pixels located within the IAhs over all land cover
classes as expected. Likewise, VH and VV pre- to post-fire backscatter

coefficient temporal differences were also compared for both cases.
Similar trends, as observed in Fig. 8, where burned and commission
error pixels had a significant higher variation when compared to un-
burned and omission errors pixels, were found over both polarizations
independently of the location with respect to the IAhs.

For six of the validation sites, images from ascending and des-
cending Sentinel-1 passes were available. Therefore, a more detailed

Fig. 6. Assessment metrics of Sentinel-1 and MCD64A1 Version 6 burned area detections per MGRS tiles and land cover classes. The metrics by land cover were
computed using confusion matrices formed by pixels of the same land cover class from all tiles. DC - Dice coefficient, OE - omission error and CE - commission error.

Fig. 7. Dispersion of Dice coefficient (DC), omission and commission errors (OE and CE) of burned area detected for all tiles for Sentinel-1 (S1) and MCD64A1
Version 6. The red line indicates median value, and top and bottom box edges indicate the 75th and 25th percentiles, respectively, while red dots indicate outliers.
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analysis was carried out to understand the difference in BA accuracy
between ascending and descending passes (Fig. 9). Overall, BA omission
errors were minimum when both passes were used while BA commis-
sion errors increased. However, DC values showed that BA detection
generally improved when data from both passes was available.

The effect of topography and the environmental conditions (soil
moisture) were analysed for each acquisition pass over the six tiles. The
LIA was often used to analyse the effect of topography on the back-
scatter coefficient in areas affected by fires (Tanase et al., 2010a, 2009;
Kalogirou et al., 2014; Gimeno & San-Miguel-Ayanz, 2004; Kurum,
2015). However, the wide swath of the Sentinel-1 IW mode results in a
variation of the incidence angle of about 17° from near (29°) to far (46°)
range. Since LIA is a function of incidence angle and local slope (U), DC
scores were analysed (by satellite pass) as a function of both angles after
grouping in five degrees classes (Tanase et al., 2010a). Similar trends
were observed for both passes (Fig. 10) with better accuracies being
observed for low LIAs and Us groups (< 40°).

Nevertheless, analysing BA accuracy by LIA and U angles has lim-
itations as LIA groups may include areas of different slopes while U
groups may include slopes oriented towards and away from the sensor

with completely different scattering properties. Therefore, the sloped
areas (U≥5°) were further analysed by their orientation (V) with re-
spect to the satellite viewing geometry (Fig. 10). Notice that positive V
values are observed for slopes oriented towards the sensor while ne-
gative values are observed for slopes oriented away from the sensor.
The BA accuracy improved over pixels oriented toward the sensor with
omission error being lower for such pixels while commission errors
slightly higher. Notice that a paired t-test showed no significant dif-
ference (p-value > 0.05) between the percentage of pixels (by ten de-
grees V groups) from ascending and descending satellite passes.

Since Sentinel-1 ascending and descending images were acquired at
different dates, variations in soil moisture (from the global SMAP pro-
duct) between the pre- and post-dates delineating the CDPs were ana-
lysed to ascertain the influence of this important environmental para-
meter on BA detection errors. Over five of the six tiles the difference in
soil moisture between ascending and descending passes was reduced.
However, for tile 30SVG soil moisture increased considerably over
some areas for descending pass acquisitions which translated in much
larger commission errors (0.46) when compared to those observed for
the ascending pass (0.16), where soil moisture was stable (Fig. 11). The
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Fig. 8. Temporal variation (Δ = datapre − datapost) of the backscatter coefficient (dB) and soil moisture (from SMAP) between pre- and post-dates for BA detection
periods. MAC values from RXD are also presented. Values are displayed by land cover classes for four categories of pixels: unburned (Un), burned (Bu) and
commission (Ce) and omission errors (Oe). Red line indicates median value. Top and bottom box edges indicate the 75th and respectively the 25th percentiles.
Outliers not shown to improved graphs discernibility.
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increased commission errors were the result of a large and compact area
located south of the fire perimeter that was misclassified as burned
(Fig. 12). The temporal variations of the backscatter coefficient be-
tween ascending and descending passes (tile 30SVG) were correlated
with the accuracy metrics. An important variation of the backscatter
coefficient during the descending pass was observed over the mis-
classified burned area (CE) for both VV (2.8 ± 0.029) and VH
(1.0 ± 0.027) polarizations (Fig. 12).

5. Discussion

5.1. Algorithm development

The Reed-Xiaoli anomaly detector (Reed & Yu, 1990), not widely
used with SAR images except for levee slide detection (Dabbiru et al.,
2012, 2016, 2018), seemed to work coherently when detecting burned
areas as errors of omission appeared when low backscatter changes
were observed over burned areas while error of commissions appeared
due to fire unrelated backscatter variations over unburned areas. These

trends were reflected by the MAC values for OE and CE classes which
were close to those observed for unburned and respectively burned
areas suggesting a correct estimation of the covariance matrices by
taking advantage of the a priori information from stable areas (i.e.,
likely unburned pixels). Comparing backscatter variability over burned
and unburned classes one may notice notably smaller MAC values over
the later which also suggests a properly functioning of the anomaly
detector according to the input data. To test the correct delineation of
stable areas (i.e., background), a t-test was used to analyse the statis-
tical difference between the inverted covariance matrices (used by
RXD) obtained using hotspots and those obtained using the BA vali-
dation perimeters from optical data (Section 3.4). The analysis showed
no statistical difference (p-values > 0.05) between the two methods
demonstrating that hotspots may be reliably used to identify likely
burned and unburned pixels as a preliminary source of burned area.

The use of ancillary information from thermal anomalies (hotspots)
allowed for attributing anomalous changes of SAR backscatter data as
BA though a locally derived knowledge extraction. Hence, burned
pixels were extracted without the need for relying on fixed thresholds

Table 3
Errors metrics for Sentinel-1 BA detections and pre- to post-fire backscatter variations assessed as a function of proximity with respect to the hotspots influence area
(IAhs).

Crops Grasslands Shrubs Forests Others

Inside IAhs DC 0.55 0.34 0.63 0.71 0.61
CE 0.38 0.64 0.27 0.27 0.36
OE 0.5 0.68 0.45 0.32 0.43
ΔVH (bp) 2.52 ± 0.02 1.06 ± 0.01 2.24 ± 0.005 1.48 ± 0.003 2.33 ± 0.03
ΔVH (cp) 1.27 ± 0.03 0.64 ± 0.01 1.54 ± 0.01 0.91 ± 0.01 1.26 ± 0.03
ΔVH (op) 0.15 ± 0.01 −0.33 ± 0.01 0.98 ± 0.003 0.31 ± 0.002 0.43 ± 0.01
ΔVV (bp) 1.42 ± 0.02 −0.73 ± 0.02 0.66 ± 0.01 0.26 ± 0.003 0.84 ± 0.04
ΔVV (cp) 0.03 ± 0.03 −0.91 ± 0.01 0.21 ± 0.01 −0.13 ± 0.01 0.42 ± 0.04
ΔVV (op) −0.29 ± 0.01 −0.78 ± 0.01 0.61 ± 0.004 0.06 ± 0.002 −0.1 ± 0.01

Outside IAhs DC 0.11 0.17 0.39 0.27 0.45
CE 0.84 0.79 0.44 0.56 0.54
OE 0.92 0.86 0.7 0.81 0.57
ΔVH (bp) 2.6 ± 0.09 1.2 ± 0.03 3.63 ± 0.01 2.25 ± 0.01 0.9 ± 0.05
ΔVH (cp) 3.31 ± 0.04 0.33 ± 0.02 3.39 ± 0.01 2.18 ± 0.02 3.33 ± 0.08
ΔVH (op) −0.01 ± 0.02 0.08 ± 0.01 0.81 ± 0.01 0.22 ± 0.004 0.52 ± 0.02
ΔVV (bp) 0.46 ± 0.11 −0.53 ± 0.03 1.73 ± 0.01 0.27 ± 0.02 −1.44 ± 0.07
ΔVV (cp) 2 ± 0.05 −1.34 ± 0.02 2.03 ± 0.01 1.21 ± 0.02 2.78 ± 0.09
ΔVV (op) −0.73 ± 0.02 −0.55 ± 0.01 0.12 ± 0.01 −0.39 ± 0.005 −0.03 ± 0.02

Δ- pre- to post-fire temporal differences (pre- minus post-) of VV and VH backscatter data by pixels classes of: burned (bp) and commission (cp) and omission (op)
errors.
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Fig. 10. Dice coefficient (DC) by local incidence angle (LIA) and local slope (U) groups. For sloped areas (U ≥ 5°) the DC, commission (CE) and omission errors (OE)
are shown as a function of slope orientation (V) with respect to the Sentinel-1 viewing geometry. Negative V values show slopes oriented away the sensor while
positive V values show slopes oriented toward the sensor. The BA metrics are shown for six tiles where both ascending (ASC) and descending (DESC) passes were
available (i.e., 10SEH, 10UEC, 29TNE, 29TNG, 30SVG and 30TYK).
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on the SAR signal, which may depend not only on the land cover type,
but also on backscatter variations due to spatially variable influencing
factors (e.g., soil and vegetation moisture) that are difficult to model.
Temporal decorrelation between hotspots (i.e., fire date) and the date at
which radar backscatter changes were detected (Belenguer-Plomer
et al., 2018b) was observed over most tiles. One should notice that
temporal decorrelation is not specific to burned area nor the C-band
frequency as similar effects were observed for L-band HV polarization
over areas affected by deforestation (Watanabe et al., 2018). Therefore,
temporal studies using SAR-based change detection techniques must

devise methods to reduce or account for such effects (see the proposed
approach in the Stage 3).

The use of a non-parametric classifier was essential to cope the
temporal lack of hotspots due to persistent cloud cover or small fire size
(i.e., not detected by thermal sensors). Parametrising random forests
classifier (RF) for BA classification may prove complex as almost an
infinite combinations of parameter settings are possible. Ramo &
Chuvieco (2017) proposed using 600 trees and a stratified training,
where 10% of training data were burned pixels and the rest not burned,
for the classification of MODIS images in burned and unburned classes.
Such a setting was tested during algorithm development but the results
were not as accurate as expected. Therefore, the RF set-up was custo-
mized based on empirical observations. The substantial differences in
RF parametrization settings were mainly caused by the algorithm de-
sign, since it is building specific RF models for each land cover type and
detection period. Hence, it does not have to cope with widely varying
land cover and burn conditions as the work of Ramo & Chuvieco (2017)
which used one uniquely trained model worldwide.

5.2. Comparison with global products

Over most validation areas, the accuracy of the proposed algorithm
was higher when compared to the MCD64A1 Version 6 product (Giglio
et al., 2018). The mean DC value over all studied locations was 0.13
higher for the Sentinel-1 BA detections (i.e., 28% higher). The DC va-
lues of Sentinel-1 detections per tiles were statistically higher than
those of MCD64A1 (paired t-test p-value of 0.024). In addition, the
variability of Sentinel-1 BA detection accuracy was considerably lower
when compared to the MCD64A1 product. The mean values for OE and
CE over all tiles were also lower for the Sentinel-1 detections.

The analysis showed that for 13 tiles (72% of the studied areas) the
Sentinel-1 BA detections had higher DC scores than the MCD64A1
product. For one tile, 33NUF, the difference in accuracy (DC) of the two
products is 0.5. The very low accuracy (DC 0.02) observed over this tile
for the MCD64A1 product is difficult to explain with the data at hand,
hence the tile was considered an outlier. For five tiles (i.e., 18NXG,
30TYK, 33NTG, 33NUG, and 49MHT) the improvement of the Sentinel-
1 product was substantial with DC increasing on average by 144% when
compared to the MCD64A1 product. The large difference in DC scores
was mainly caused by the high OE (0.72 to 0.94) in the MCD64A1
product. Detection of small burned areas (< 120 ha) is problematic
using MODIS data due to the coarse sensor resolution (Giglio et al.,
2009). To evaluate if reduced spatial resolution of MODIS was the
reason behind MCD64A1 product poor performance, the percentage of
BA from fire scars below 120 ha was computed based on the reference
datasets. In tiles 33NUG, 33NTG, and 49MHT fires below 120 ha con-
stituted 85%, 53% and respectively 48% of the total BA suggesting that
the lower performance may be related to the coarser MODIS spatial
resolution. Therefore, these results suggest that improvements in BA
detection accuracy may be possible not only in areas with frequent
cloud cover. However, for tiles 18NXG and 30TYK small fires
(< 120 ha) constituted only 34% and respectively 25% of the total BA
indicating that fire size may not be the only factor influencing detection
accuracy when using coarse resolution sensors.

For five tiles (i.e., 29TNE, 30SVG, 36NXP, 48VWL and 50JML) the
MCD64A1 product showed higher DC scores when compared to the
Sentinel-1 based detections. The mean difference for the four first tiles
was only 0.13. However, for tile 50JML this difference was higher, with
the MCD64A1 product being markedly more accurate (DC 0.41 vs.
0.21). It seems such large differences were related to the conditions
encountered over the Australian grasslands, where backscatter varia-
tions recorded from pre- to post-fire periods were low, hindering the
detection algorithm. By land cover class, the results indicate that a
radar-based BA mapping algorithm may provide BA products with
better or similar accuracies when compared to available global pro-
ducts, except for grasslands. The most significant difference in accuracy

Un (A) Un (D)  Oe (A) Oe (D)  Ce (A) Ce (D)  Bu (A) Bu (D)
-0.04

-0.02

0

0.02

Fig. 11. Temporal variations of soil moisture (SM) from Soil Moisture Active
Passive (SMAP) mission for pre- and post-fire dates (ΔSM= SMpre − SMpost), in
tile 30SVG. Ascending (A) and descending (D) passes are analyzed separately.
Pixels are grouped by classes of unburned (Un) and burned (Bu). Pixels from
areas affected by commission (Ce) and omission errors (Oe) are also shown. The
red line indicates median value, and top and bottom box edges indicate the 75th
and respectively the 25th percentiles. Outliers are not shown to improve graph
discernibility.

Fig. 12. Burned area from ascending (left column) and descending (right
column) passes in tile 30SVG: red – burned (Bu), white – unburned (Un), black –
omission errors (Oe) and blue – commission errors (Ce). VV and VH backscatter
coefficient variation (Δγ0 = prefire − postfire) is also shown for each pass.
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was observed over grasslands, where the MCD64A1 was more accurate
than the Sentinel-1 based BA (DC 0.45 vs. 0.28). Conversely, over for-
ests Sentinel-1 derived BA was more accurate (DC 0.64 vs. 0.49).

5.3. Factors influencing BA accuracy

Temporal variation of pre- and post-fire VH and VV backscatter
coefficient over pixels affected by CE and OE were similar to those
observed over burned and respectively unburned pixels. Following, the
main factors affecting burned area classification were discussed.

5.3.1. Environmental conditions
CE may only be related to factors that modify the scattering pro-

prieties in a similar manner to fires (e.g., soil moisture variations) when
backscatter changes are concentrated in a reduced part of the image
(anomalous changes), since the RXD may identify such variations as
spatial anomalies and consequently the algorithm may misclassify them
as BA. For instance, unrelated fire backscatter variations which did not
affect the entire image occurred over tile 30SVG, where the highest
difference between commission errors for ascending (0.16) and des-
cending (0.46) passes were observed. For this tile, soil moisture varia-
tions over CE pixels varied notably between ascending and descending
passes. For the descending pass, post-fire soil moisture was on average
0.014 ± 1.18e-04 m3/m3 higher when compared to pre-fire soil
moisture, while for the ascending pass the increment was marginal
(6.2e-04 m3/m3). Consequently, over pixels affected by CE, an average
increase of 2.8 ± 0.029 dB for VV polarization and 1.0 ± 0.027 dB for
the VH polarization was recorded from pre- to post-fire date for the
descending acquisitions. The differentiated increase by polarization
confirmed the larger influence of the soil surface properties on the VV
polarization when compared to the VH polarization as noted previously
by the other authors (Freeman & Durden, 1998; Yamaguchi et al., 2005;
Van Zyl et al., 2011). The backscatter coefficient change generated by
variations in soil moisture was incorrectly mapped as burned since: (i)
the algorithm does not account for the sign of the backscatter change;
and (ii) the image part affected by rainfall was located close to hotspots
(areas bordering the fire perimeter). This suggests that algorithm im-
provements may further mitigate commission errors related to soil
moisture variations by considering the backscatter change direction.
Notice that, tile 30SVG was an exception as, at this location, a major
part (67.6%) of the CE were concentrated in a large enough area
(3420 ha) to extract useful information from the coarse pixel spacing
SMAP product. The influence of soil moisture on BA accuracy was in-
conclusive for the rest of the tiles, most probably due to the coarse pixel
spacing of the SMAP product (9 km). The use of higher spatial resolu-
tion soil moisture products such as the Copernicus Surface Soil Moisture
(SSM), a Sentinel-1 based product with 1 km of pixel spacing (Bauer-
Marschallinger et al., 2018), shall be investigated once they become
available at global level. Further, as global products of harvest, defo-
liation, floods or logging at enough detailed pixel spacing, when com-
pared to Sentinel-1 spatial resolution, are not available and precipita-
tion products based on extrapolation of data from rain gauges have a
much coarser pixel spacing (0.5°) and own errors (Hu et al., 2018), it
was not possible to identify all the commission errors sources and filter
them out.

5.3.2. Fire impact
Conversely, pixels affected by OE may have been the result of the

effects of different variables which attenuated the vegetation combus-
tion effects on the C-band backscatter coefficient. Fire severity, the
degree of organic matter loss due to fire combustion (Keeley, 2009),
constrains the temporal backscatter variation between pre- and post-
fire (Tanase et al., 2010b, 2014). The dNBR mean values over the pixels
affected by omission errors were 22.73% lower when compared to the
dNBR values observed for correctly detected burned pixels. Notice that
the dNBR index is widely used to detect BA and estimate fire severity

over a range of biomes (Escuin et al., 2008; Loboda et al., 2007; Van
Wagtendonk et al., 2004; Tanase et al., 2011) and that high fire severity
implies a more significant reduction of vegetated scattering elements
due to combustion.

5.3.3. Topography
Topography also affected the BA accuracy, with a tendency of in-

creased burned areas omission being observed for the pixels oriented
away from the sensor most likely due to the existence of shadowed
regions (Tanase et al., 2010a, 2009). Conversely, for the pixels oriented
towards the sensor the commission errors increased since soil propri-
eties had a higher influence on radar scattering. Since the OE due to
topographic effects were higher when compared to the CE, BA accuracy
was improved by joining detections from different relative orbits when
available (see Subsubsection 5.3.5).

5.3.4. Land cover type
The variables mentioned above affect the scattering processes over

burned and unburned areas differently depending of the land cover
class observed and translated into variable map accuracies. Lower BA
accuracies were found over grasslands as the scattering elements
characteristic for this vegetation type interact to a lesser extent with the
C-band waves when compared to the scattering elements encountered
in shrubs and forests (e.g., stems, branches). However, the most im-
portant factor affecting the algorithm sensitivity to fire in grasslands
seemed to be related to fire timing. In areas characterized by long in-
tervals (months) between grass curing and fire events the algorithm
encountered difficulties as the cured (i.e., dry) grass has low scattering
properties being mostly transparent to the radar waves (Menges et al.,
2004). Therefore, grass consumption by fire results in small or nil VV
and VH backscatter changes from vegetation consumption which hin-
ders BA detection. This observation seemed supported by the lower
temporal variation of the backscatter coefficient over burned when
compared unburned grasslands. Conversely, forest and shrubs, besides
containing scattering elements more susceptible to interact to C-band
radar waves, are not affected by curing to the same extent (i.e., some
water needs to be retained to ensure plant survival). Thus, vegetation
consumption by fire results in a noticeable scattering decrease which is
detected by the algorithm, although sometimes a temporal gap between
fire and detection was observed (temporal decorrelation) as discussed
in Belenguer-Plomer et al. (2018b).

5.3.5. Ancillary information and SAR data availability
The use of hotspots was essential given that only two backscatter

channels were available (VV and VH polarizations). Without hotspots,
differentiation of burned areas from other land changes (e.g., floods,
logging, harvest, vegetation disturbance due to pests, drought) that
modulate the backscatter coefficient in a similar fashion was difficult as
also noted by Huang & Siegert (2006). Lower BA detection accuracies
were found in pixels located far (outside IAhs) when compared to pixels
located in close proximity (within 750 m) of hotpots events (see sup-
plementary data). According to the reference data, only a 15.3% of
burned pixels were not located within IAhs allowing for BA detection
rates comparable or better than those of currently available global
products.

Joining detections from different relative orbits (from ascending
and descending passes) increased the detected burned area. Inherently,
the availability of several orbits covering the same area resulted in
reduced OE which is particularly true when different viewing geome-
tries were used over areas with steep topography. Conversely the CE
increased as wrongly detected areas are also joined in post-processing
(Stage 5 of the algorithm). Despite the increased CEs, the use of both
Sentinel-1 passes generally improved the BA accuracy. It should be
noted that consistent dual pass (ascending and descending) acquisitions
are currently available only over Europe and North America. The
analysis suggested that differences in BA accuracy between ascending
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and descending passes were mainly caused by the interaction between
the viewing geometry and the local topography as explained in
Subsection 4.3, with the highest accuracies being achieved over areas
oriented towards the sensor. Using images acquired in a single pass may
result in increased omission errors particularly in regions with accen-
tuated topography. These results confirm previous findings that high-
light the effect of topography on burned area detection and fire impact
estimation (Gimeno & San-Miguel-Ayanz, 2004; Huang & Siegert, 2006;
Tanase et al., 2010b). Further investigations of topographic effects re-
duction are needed as, under the current observation scenario, for most
of the Earth surface Sentinel-1 data are consistently acquired in only
one pass (i.e., ascending or descending).

The accuracy of the Sentinel-1 product was also assessed as a
function of the number of SAR images available during the detection
period as well as the number of days between consecutive acquisitions.
The BA was detected regardless of the image number or their temporal
distance, thus coping with the variable acquisition strategy (temporal
frequency) of the Sentinel-1 mission over different regions. The main
temporal factor which limited the algorithm accuracy was the post-fire
vegetation regrowth cycle. Where image acquisitions were more fre-
quent, when compared to vegetation regrowth cycles, the algorithm
detected the changes in backscatter coefficient generated by fires and
labelled them as BA. However, the relationship between BA detection
accuracy (DC) and the number of images used and their acquisition
frequency (day difference of consecutive images) per tiles was weak
(0.32 and respectively 0.38 Pearson's correlation coefficient) since ad-
ditional factors affected the algorithm accuracy (i.e., topography and
fire unrelated changes). Thus, it was concluded that current Sentinel-1
temporal frequencies might be sufficient for global retrieval.
Nevertheless, the relatively small number of test samples may have
obscured some effects. In addition, the relationship between Sentinel-1
acquisition frequency and the detection accuracy may vary with the
land cover type (different post-fire regrowth cycle).

5.4. Comparison with previous Sentinel-1 based approaches

Previous studies based on Sentinel-1 data for BA detection were
carried out only at local to regional scales. However, C-band back-
scatter from fire affected areas varies with the local conditions.
Therefore, locally trained algorithms are difficult to transfer to other
regions. Engelbrecht et al. (2017) used empirical thresholds to detect
BA in South Africa achieving OE and CE of 0.29 and 0.48, respectively.
Depending on area, the proposed algorithm may achieve similar or
better accuracies. Lohberger et al. (2018) used an object-based image
analysis approach to detect BA in Indonesia. However, since only in-
formation on the overall accuracy was provided comparisons were
difficult. Finally, Verhegghen et al. (2016) tested the most suitable
thresholds when separating burned from unburned pixels in the Congo
basin, but did not provide accuracy metrics of their detected BA.
Nevertheless, since such studies relied on algorithms heavily optimized
over local to regional scales, comparisons with the proposed algorithm
are of little relevance.

6. Conclusions

This paper introduced an automated and cloud cover insensitive
algorithm for BA detection using Sentinel-1 dual-polarized backscatter
images. Hotspots from active fires and land cover data were used as
ancillary information when attributing anomalous backscatter changes
to burned and unburned classes. The algorithm was validated at 18
locations (100 × 100 km tiles) covering over 21 million hectares
worldwide. Algorithm accuracy was assessed using reference burn
perimeters derived from optical sensors (Landsat-8 and Sentinel-2). The
agreement between the Sentinel-1 algorithm and the reference peri-
meters was compared with that of the most widely used global BA
product, the MCD64A1 Version 6. Over all tiles, the mean OE and CE

for BA were 0.43 and 0.37, respectively. The mean DC was 0.59. When
compared with the MCD64A1, the proposed algorithm improved
burned area detection (DC) by 28% (from 0.46 to 0.59) over the ana-
lysed tiles. Such improvements in accuracy were mainly related to re-
duced OE, a useful trait demonstrating that Sentinel-1 data may be a
key source of information when optical data based products have in-
formation gaps due to persistent cloud cover.

According to our analysis, strong topography conditioned the BA
accuracy with slopes oriented away from the sensor being subject to
higher errors. Such effects were reduced by combining detections from
different relative orbits. Likewise, it was observed that a reduced fire
severity translated into increased omission errors. On the other hand,
commission errors seemed to correlate with fire unrelated changes af-
fecting the scattering processes. Furthermore, scattering from burned
areas was directly influenced by vegetation type with higher accuracies
being observed over forested areas (DC 0.64) and lower over grasslands
(DC 0.28) which were attributed to the difficulty in tracking changes of
cured vegetation using the C-band data. The main advantages of the
proposed algorithm were related to: (i) self-adapting to local scattering
conditions without the need for a priori information of the observed
area or the use of fixed thresholds; and (ii) ability to detect BA during
periods with no thermal anomalies. On the other hand, the main lim-
itations were related to the: (i) misclassification of fire unrelated
changes; (ii) positive relationship between accuracy and hotspots
availability; and (iii) accuracy dependence on variables affecting radar
scattering processes (e.g., ecosystem type, topography). To reduce such
limitations, further improvements shall be investigated.
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