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Abstract
The apparent decline in the global incidence offire between 1996 and 2015, asmeasured by satellite-
observations of burned area, has been related to socioeconomic and land use changes. However,
recent decades have also seen changes in climate and vegetation that influence fire andfire-enabled
vegetationmodels do not reproduce the apparent decline. Given that the satellite-derived burned area
datasets are still relatively short (<20 years), this raises questions both about the robustness of the
apparent decline andwhat causes it.We use two global satellite-derived burned area datasets and a
data-driven firemodel to (1) assess the spatio-temporal robustness of the burned area trends and (2) to
relate the trends to underlying changes in temperature, precipitation, human population density and
vegetation conditions. Although the satellite datasets and simulation all show a decline in global
burned area over~20 years, the trend is not significant and is strongly affected by the start and end year
chosen for trend analysis and the year-to-year variability in burned area. The global and regional
trends shownby the two satellite datasets are poorly correlated for the commonoverlapping period
(2001–2015) and the firemodel simulates changes in global and regional burned area that lie within
the uncertainties of the satellite datasets. Themodel simulations show that recent increases in
temperature would lead to increased burned area but this effect is compensated by increasingwetness
or increases in population, both of which lead to declining burned area. Increases in vegetation cover
and density associatedwith recent greening trends lead to increased burned area in fuel-limited
regions. Our analyses show that global and regional burned area trends result from the interaction of
compensating trends in controls of wildfire at regional scales.

1. Introduction

Despite the occurrence ofmajor catastrophic wildfires in recent years (Cruz et al 2012,Dennison et al 2014,
Stephens et al 2014, Bowman et al 2017), total global burned area (BA) apparently declined between 1996 and
2015 (Van Lierop et al 2015,Doerr and Santín 2016, Andela et al 2017). This finding is based on satellite-derived
burned area data such as from theGlobal Fire EmissionsDatabase (GFED) (Giglio et al 2013). GFED extends
burned area estimates from theMODIS sensor (Moderate-Resolution Imaging Spectroradiometer,mid-2000 to
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2015) for the period 1996–2000with activefire hotspots fromVIRS (Visible and Infrared Scanner) andATSR
(Along-Track Scanning Radiometer). Themerging of the burned area estimates fromdifferent sensors likely
affects the computation of burned area trends (Giglio et al 2013). Other burned area datasets have also been
derived fromMODIS but using different retrieval algorithms and spatial resolutions (Chuvieco et al 2018, Giglio
et al 2018). Comparisons of these datasets show similar spatial patterns of burning but some large differences in
global and regional total burned area (Chuvieco et al 2016, 2018,Humber et al 2019). Generally, the relatively
short period covered (15–20 years)makes it difficult to achieve a robust quantification of burned area trends.

The apparent recent decline in global burned area has been associated to human activities, specifically
population growth, agricultural expansion and land-use changesmostly in northern-hemisphere Africa (Andela
et al 2017). However, the incidence of wildfires is influenced bymany factors including climate, ignition sources,
and vegetation properties (Bowman et al 2009, Krawchuk et al 2009,Moritz et al 2012, Bistinas et al 2014, Knorr
et al 2014). The impact of changes in climate onfire are obviously regionally specific, although high temperatures
and increasing summer drought have been invoked as the cause of recent extreme fire seasons (Holden et al
2018, Turco et al 2018) and climate change has led to an increase inwildfire season length over large parts of the
land area (Jolly et al 2015). On the other hand, large parts of theworld such as theAfrican Sahel have experienced
widespread increases in vegetation cover and above-ground biomass (Liu et al 2015, Zhu et al 2016, Brandt et al
2017)which affects fuel availability and thus likely fire incidence and burned area. The influence of such changes
on recent trends in global burned area has yet to be adequately assessed.

Fire-enabled dynamic global vegetationmodels (DGVMs) explicitly account for the effects of climate,
humans and vegetation onfire occurrence and could potentially be used to assess controls on burned area trends
(Hantson et al 2016). However, state-of-the-art DGVMs donot reproduce the observed decline in global burned
area: half of theDGVMs from the FireModel Intercomparion Project (FireMIP)underestimate the apparent
decline in global burned area, while the other half show an increase in global burned area (Andela et al 2017).
These differences in behaviour suggest that some functional relationships and associated parameterisations are
poorly constrained in thesemodels. Indeed, analyses of the FireMIP simulations suggest that, while they
represent the climate controls on burned area reasonably well, they underestimate the sensitivity to previous-
season plant productivity and have over-simplistic representations of the influence of human activities on
burned area (Forkel et al 2019). Empirical firemodels (Moritz et al 2012, Bistinas et al 2014, Forkel et al 2017)
provide an alternative and arguably better approach to reproduce observedfire dynamics and to quantify the
relative importance of climate, vegetation and human factors on temporal changes in burned area.

In this paper, we first assess the robustness of trends in global burned area using two data sets and taking into
consideration the impact of the sampling period and time series length.We then use a recently developed
empirical firemodel to analyse the relative importance of recent climate, human population, and vegetation
changes on these trends.

2.Data andmethods

2.1. Burned area data
Weanalysed two global burned area satellite datasets:

• GFED4 (Global Fire EmissionsDatabase, version 4, 1996–2015 (Giglio et al 2013)), based onMODIS 500 m
data and prolonged before 2001withATSR andVIRS activefire observations; and

• FireCCI50 (European Space AgencyClimate Change Initiative, Fire_CCI, version 50, 2001–2015 (Chuvieco
et al 2018)), based onMODIS 250 mdata.

We simulated burned area using an empirical firemodel based on the SOFIA (Satellite Observations for FIre
Activity) approach, which estimatesmonthly burned area fromobserved time series of land cover, vegetation,
climate variables and human population density (Forkel et al 2017).

All burned area and ancillary datasets were either obtained at or aggregated to 0.25° x 0.25° spatial
resolution.

2.2. Trend analysis
Weperformed amulti-temporal trend analysis to assess the effects of sampling period, time series length, and
year-to-year variability on estimated trends (McKinley et al 2011).We computed trends for different periods
within the time series, where the periods are all possible combinations offirst and last years with time lengths�8
years within the time series (Rpackage greenbrown version 2.4.3). Trends for each time periodwere computed
fromannually aggregated total burned area based on linear quantile regression to themedian. Quantile
regression ismore robust than ordinary least squares regression because it reduces the effect of single extreme
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years (i.e. years with extreme high burned area) on the estimated trend. Trend slopes were expressed as
percentage of change relative to themultiyearmean of the time series. The two-tailedMann-Kendall trend test
was used to estimate the significance of the trends (Mann 1945, Kendall 1975). All analyses were done in the R
software (RCore Team2018) (an overview of the packages and functions used is provided in supplementary
table 3).

2.3. Predictor data
Previous studies have identified a number of climatic variables, vegetation properties and socio-economic
factors that either directly control or are surrogates for knownmechanistic controls onfire occurrence and
spread (Aldersley et al 2011, Bistinas et al 2014, Forkel et al 2017, 2019). For example, the number of wet days
(WET) provides ameasure of the average length of dry periods, whilemonthlymaximum temperature (TMAX)
andmonthly diurnal temperature range (DTR) aremeasures of energetic constraints on fuel drying.Human
population density (PD) has beenwidely used as a predictor of ignitions and/orfire suppression (Knorr et al
2014,Hantson et al 2015). The type of natural land cover (i.e. grassland, forest) influences both fuel availability
andfire type.Measures such as vegetation greenness (i.e. fraction of absorbed photosynthetically active
radiation, FAPAR) fromoptical satellite observations and vegetation optical depth (VOD) frommicrowave
satellite observations providemeasures of different changes in vegetation properties. Changes in FAPAR
represent changes in green leaf cover and biomass (Myneni andWilliams 1994) and hence FAPAR and related
variables have been previously used as proxy for fuel loads infiremodelling (Pausas andRibeiro 2013, Knorr et al
2014). VOD is proportional to the fuelmoisture content (FMC) and aboveground biomass (BM) of vegetation
(Jackson and Schmugge 1991, Sawada et al 2016):

= ´ ´VOD b FMC BM

where b is a conversion factor that varies with vegetation type and depends on the frequency ofmicrowaves
(Griend andWigneron 2004). Consequently, changes inVOD represent either changes in ecosystem biomass
and/or fuelmoisture content (Chaivaranont et al 2018, Fan et al 2018).Woody vegetation,mainly trees,
dominate the above-ground biomass and total vegetationwater content of an ecosystem. As a consequence,
VOD is sensitive to changes in tree biomass (Liu et al 2013) and tree cover (Brandt et al 2017). Based on these
sensitivities, FAPAR andVOD trends imply different changes in vegetation structure (Andela et al 2013) and
hencemight have different impacts on the estimation of burned area (Forkel et al 2017).

We used these climate, human population density, land cover and vegetation indices as input to the SOFIA
model in order to assess changes in controls onfire. Climate data (WET, TMAX,DTR)were taken from theCRU
TS3.2 dataset (Harris et al 2014). Human population density (PD)was taken from the global gridded data set of
changes (Pesaresi et al 2013). Land cover was taken from the Land cover_CCI dataset (version 2.0.7, 1992–2015)
(Li et al 2018).We translated land cover classes to the fractional coverage of plant functional types (PFT) per
0.25° grid cells using the cross-walking approach (Poulter et al 2015, Li et al 2016)with the conversion factors
and PFTdefinitions as in Forkel et al (2017). The fractional coverage of PFTswas then aggregated to fractional
coverage of trees, shrubs, herbaceous vegetation, and croplands. Vegetation changes were assessed by using
FAPAR from theGIMMS3g dataset over the period 1982–2011 (Zhu et al 2013). VODwas obtained froma
harmonized dataset of several passivemicrowave satellites over the period 1993–2012 (Liu et al 2011). Temporal
gaps in both datasets were filled in two steps: firstly, by replacing seasonal (winter) gaps by the observed
minimumvalue in each pixel and secondly, by filling remaining gapswith a smoothing spline.

2.4. SOFIAmodel
SOFIA is a genericmodel approach that allows the prediction of burned area using variousmodel structures
(Forkel et al 2017). In the version of the SOFIAmodel applied here, burned area (BA)was simulated onmonthly
time steps per 0.25° grid cells based on the fractional coverage of different land cover types (LC), and on
controlling functions based on the predictors FAPAR,VOD,WET, TMAX,DTR and PD:

å=
=

⁎ ( ) ⁎ ( ) ⁎ ( ) ⁎ ( ) ⁎ ( ) ⁎ ( )
{ }

BA LC f FAPAR f VOD f WET f TMAX f DTR f PD
i T S H C

i i i i i i
, , ,

where T, S,H, andC are the fractional coverage of trees, shrubs, herbaceous vegetation, and croplands per 0.25°
grid cells, respectively. FAPAR andVODwere used as average values over the 12 precedentmonths to account
for the year-to-year variability in vegetation conditions.

The controlling functions f(x) are logistic functions:

=
+ - ´ -

( ) ( )f x
mx

e1 sl x x0

where the parametersmx, x0, and sl vary for each dataset x and by land cover type (Forkel et al 2017). Values of
f(x)were trimmed to the range between zero (i.e. complete restriction offire) and unity (complete allowance),
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allowing the response functions to be represented as an exponential (supplementary figure 1 is available online at
stacks.iop.org/ERC/1/051005/mmedia). The parameters of the controlling functionswere estimated by
optimizing the simulatedmonthly burned area from the SOFIAmodel against theGFED4 dataset for selected
grid cells (supplement 1, supplementary table 1).

The SOFIAmodel simulations cover the period from1994 (12months after the beginning of theVOD
dataset) until the end of 2011 (end of the FAPARdataset). Therewere no harmonized long-term FAPAR and
VODdatasets available that would allowus to run SOFIA simulations for the full periods of theGFED4
(1996–2015) or FireCCI50 (2001–2015) datasets.

The SOFIAmodel can be used to assess the relative contribution of a control x on the dynamics of burned
area [BA(x)]:

*å=
=

( ) ( )
{ }

BA x LC f x
i T S H C

i i
, , ,

This approach assumes that only a single factor x (e.g. FAPAR) controls burned areawhile all other factors
have no effect on burning. In the followingwe refer to BA(x) as the ‘marginal burned area’.We summedmonthly
BA andBA(x) time series to annual totals for the computation of trends. BA(x) time series are shown as
anomalies relative to the averagemultiyear (1994–2011) total BA(x) for visual purposes infigure 2.

SOFIA reproduced global spatial patterns of burned area in comparisonwith theGFED4 and FireCCI50
burned area datasets but simulated global total burned area (295Mha yr−1) that is lower than the range from
satellite datasets (supplementary figure 2). However, SOFIA reproduced the year-to-year variability and burned
area trends within the uncertainties of the datasets inmost regions (supplementary figures 3 and 4).

3. Variability in global burned area trends

Weconfirmprevious studies that global burned area apparently declines over~20 years (Andela et al 2017): The
GFED4 and FireCCI50 datasets showed declining global burned area of−0.74%yr−2 between 1996–2015 and of
−0.66%yr−2 between 2001–2015, respectively (figure 1). However, these trends are not significant.
Furthermore, there is poor agreement in the trend shown by theGFED4 and FireCCI50 datasets for the period
with overlap (2001–2015): TheGFED4 dataset shows a stronger decline (factor 1.8,−1.22%yr−2) than the
FireCCI50 dataset (−0.66%yr−2,figure 1(d)). Hence, the apparent decline in global burned area inGFED4 and
FireCCI50 is not confirmed for the commonperiod of these datasets.

The satellite data sets have a limited temporal coverage, and the identification of trends is strongly affected by
years with abnormally high or low burned area at the beginning and end of the time series. In particular, the last
three years 2013–2015 have very low global burned area and are themain cause of the reported decline over
1996/2001–2015 (figure 1(c)). On the other hand, 2011 had the largest global burned area in the FireCCI50
dataset and the third largest burned area in theGFED4 dataset and this would result in a plateau or a positive
trend in burned area if the analysis were terminated in this year. TheGFED4 dataset showedmostly significant
declining trends (p£0.05,Mann-Kendall trend test) if thefirst analysis year is between 1998 and 2002 and the
last year is 2014 or 2015. The FireCCI50 dataset did not show a significant trend in global burned area for any
sampled period (supplementary figure 3(b)). The estimated trend slopes for different time periods are not
correlated (r=0.13) between the two datasets (figure 1(d)).

Most of the overall decline in burned area occurs in northern-hemisphere Africa, southern-hemisphere
SouthAmerica, central Asia, andAustralia, whereas large parts of southern-hemisphere Africa had increasing
burned area (figure 1(a), supplementary figure 4). In general, the sign of the regional trends are consistent
between the two sets of observations even though the slopes differ (figure 2). However, very few of the observed
regional trends are significant.

The SOFIAmodel also shows a (non-significant) decline in global burned area between 1994 and 2011.
Overall, the SOFIAmodel hadmostly declining trends (figure 1(e)), especially if thefirst year of the analysis is
before 2000 (supplementary figure 3(c)). In the period of overlap between the satellite observations and the
simulation (2001–2011), there is agreement between the SOFIAmodel and the FireCCI50 dataset that there is no
significant trend (or a slight positive tendency) in global burned area, whereas theGFED4 dataset shows a
significant negative trend (figure 1(e), left panel). For the full period of each dataset and the common
overlapping period, trends in simulated burned area from the SOFIAmodel are within the uncertainties of the
satellite datasets.

The satellite datasets and the SOFIAmodel all show significant declining burned area in northern
hemisphere Africa (figures 2(a), (f)). This region dominates the global decline in burned area. Southern-
hemisphere Africa showed a tendency towards increasing burned area (figures 2(b), (g)). The FireCCI50 dataset
and the SOFIAmodel had significant declining burned area in northern hemisphere SouthAmerica
(figure 2(h)). The satellite datasets suggest a non-significant decline and the SOFIAmodel a stable burned area in
southern hemisphere SouthAmerica (figures 2(d), (i)). The satellite datasets show a significant decline in burned
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area in central Asia andAustralia whereas the SOFIAmodel shows no trend in these regions (supplementary
figure 4). In the following, controls on regional burned area trends will be assessed only for northern- and
southern-hemisphere Africa and SouthAmericawhere trends are registered in satellite datasets and reproduced
by SOFIA. The satellite datasets and the SOFIAmodel show a decline in global burned area overall but
differences between the datasets prevent an accurate quantification of this decline.

4. Controls on regional burned area trends

The SOFIA simulations suggest that changes in climate, vegetation and human population had regionally
diverse effects onmarginal burned area and together shape the overall regional burned area trends (figure 2).

In northern-hemisphere Africa, the decline in burned areawas driven by significant declines in themarginal
burned area associatedwith population density, number of wet days and precedent FAPARwhilemaximum
temperature caused a non-significant increase in themarginal burned area (figure 2(a)). According to the SOFIA
model, increases in population density, wet days and FAPAR in tree-covered regions all cause a decline in burned
area (supplementary figures 1(a), (c) and (d)). Thus, the positive trends in FAPAR (‘greening’)with a
simultaneous increase in tree cover at the expense of herbaceous and shrub cover in northern-hemisphere Africa
(supplementary figures 5 and 6), coupledwith an increase in the number of wet days permonth, andwith
increasing population density all contribute to reducing the amount offire.

In southern-hemisphere Africa, however, the controls on burned area counteracted one another, resulting
in no trend in simulated burned area. Themarginal burned area declined because of increases in population
density and number of wet days but increases inmaximum temperature andVODcontributed to increasing
marginal burned area (figure 2(b)). Strong positive trends inVODoccurred especially in regions dominated by
herbaceous vegetation (supplementary figures 5 and 6). Thefire-suppressing effects of increasing wetness and

Figure 1.Variability in global burned area trends from satellite datasets and the SOFIAmodel. (a)Grid-cell level trends in annual
burned area from theGFED4 dataset for the period 1996–2015. Trends were not computed in grid cells with infrequent fire (grey
areas, i.e. BA>0 in less than 8 years). (b)Global annual total burned area and trends. None of the trends is significant. (c)Variability
in the global burned area trend from theGFED4 dataset depending on the period (first to last year) for which the trendwas calculated.
Each point represents the global burned area trend slope as percentage to themean global burned area for the period. Point symbols
denote the significance according to theMann-Kendall trend test. The grey rectangle highlights the overlapping period (2001–2011) of
the two datasets and the SOFIAmodel. Supplementary figure 3 shows the same figure for the FireCCI50 dataset and the SOFIAmodel.
(d)Comparison of the global burned area trend slope for different periods between theGFED4 and FireCCI50 datasets for periods of
³ 8 years within 2001–2015. Larger points reflect trends based on longer periods (max 15 years). (e)Distribution of the global burned
area trend slope from theGFED4 (i.e. the points frompanel (c)), FireCCI50 datasets and the SOFIAmodel for the overlapping period
(2001–2011) and for the full period of each dataset (GFED4: 1996–2015, FireCCI50: 2001–2015, SOFIA: 1994–2011). Significant
trends are denotedwith a grey-coloured * symbol (p£ 0.05,Mann-Kendall trend test).
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increasing population density compensate the tendency for increased burned area due to an increase in
herbaceous fuels and temperature.

In both northern and southern hemisphere SouthAmerica, population density contributed to declining
marginal burned area and increasing temperatures and FAPAR contributed to increasing burned area
(figures 2(c)–(d)). FAPARhadwidespread positive trends especially in shrub or herbaceous-dominated regions
(supplementary figure 5). Increasing FAPAR in non-tree-covered regions causes increasingmarginal burned
area in the SOFIAmodel (supplementary figure 1). In the arc of deforestation at the southern edge of the
Amazon rainforests, VODdecreased because of decreasing tree cover (supplementary figure 5 and 6) (Andela
et al 2013). This decrease inVODcaused an increase in the simulatedmarginal burned area (figure 2(d)). Hence,
the SOFIAmodel results suggest that deforestation contribute to increased flammability in tropical forests. In
summary, vegetation changes in SouthAmerica are diverse but overall promote increasing burned area, which is
then counteracted by changes in other factors.

5.Discussion and conclusions

Our results provide amore nuanced view of recent changes in global burned area. Themulti-temporal trend
analysis approach allows us to assess the robustness of trends by accounting for the effects of individual years.
Although the satellite datasets do show a decline globally, we found that the decline is not significant, strongly
affected by the year-to-year variability in burned area,mostly caused by the last three years (2013–2015)with low

Figure 2.Trends and controls in regional burned area. Panels (a)–(d) show regional annual totals and trends of burned area (BA) and
themarginal burned area, which is controlled by a single factor (BA(x) anomaly relative tomeanBA(x) in 1994–2011). Trends denoted
with a * star symbol are significant (p£0.05,Mann-Kendall trend test). Panel (e) shows the spatial extent of the regions
(NHAF=Northern-hemisphere Africa, SHAF=Southern-hemisphere Africa, NHSA=Northern-hemisphere SouthAmerica,
SHSA=Southern-hemisphere SouthAmerica). Panels (f)–(i) showdistributions of the regional burned area trend slope from the
GFED4, FireCCI50 datasets and the SOFIAmodel for the overlapping period (2001–2011) and for the full period of each dataset.
Results for other regions are shown in supplementary figure 4.
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global burned area, and showsmajor differences between satellite datasets. The detection of trends in (satellite)
time series is generally hampered by changes in the underlying sensor (Tian et al 2015,Hammond et al 2018) and
by the year-to-year variability and noise (Forkel et al 2013), which increases the number of years required to
detect trends (Weatherhead et al 1998). Our results suggest that trends in burned area need to be examinedwith
(1) longer andMODIS-independent satellite time series (e.g. by exploiting the AVHRRor Landsat archives); (2)
with long-term regional observations (Kasischke andTuretsky 2006,Müller et al 2015,Doerr and Santín 2016);
and (3)with independent fire-related variables (Kaiser et al 2012, Santín et al 2016).

Evenwith longer records, the interplay of climate, vegetation and human controls onfirewill pose
challenges for the attribution of the trends. Interpretations based on bivariate relationships only reflect the
emergent controls onfire trends; attribution to fundamental underlying controls requires amore sophisticated
approach usingmultivariate statistical ormachine learning approaches (Bistinas et al 2014, Forkel et al 2019).
Only by combining long time series and advanced analyticalmethodswill it be possible tomake robust
statements about changes infire regimes and the underlying controls.

The ability to reproduce recent trends in global burned area has been used as an indication of the poor
performance offire-enabledDGVMs (Andela et al 2017). This conclusion needs to be carefully re-assessed.
DGVMshave regionally various performances in simulating burned area (Forkel et al 2019) and hence
comparison of global trendsmight bemisleading. Uncertainties in the satellite datasets also challenge the
statement that ‘firemodels were unable to reproduce the pattern andmagnitude of observed declines’ (Andela
et al 2017). The SOFIAmodel, in commonwith some of the fire-enabledDGVMs, has a weaker decline in global
burned area (1994–2011) than theGFED4 dataset (1996–2015) but globally and in northern-hemisphere Africa
it has comparable trendswith the FireCCI50 dataset in the overlapping period.

Asfire is influenced by the interplay of climate, vegetation, and human activities, changes in these controls
can cause diverse changes in fire and burned area. The SOFIAmodel indicates that the decline in northern-
hemisphere Africa is associatedwith increasing population density (Andela and van derWerf 2014, Andela et al
2017) but with an additional effect from increasing wetness. At the global scale, temperature and population
density showpositive and negative emergent relationships with burned area, respectively (Moritz et al 2012,
Bistinas et al 2014, Knorr et al 2014, Forkel et al 2019). Our simulationswith the SOFIAmodel show that the
impacts of increases in population density andwarming can counteract one another, resulting inweakened
trends or stable burned area inmany regions.

Changes in vegetation properties are important controls for regional trends in burned area. Northern-
hemisphere Africa has experienced greening and increases inwoody vegetation cover in recent decades
(Fensholt et al 2013, Brandt et al 2017). Our results indicate that such a shift towards coarser fuels contributed to
the decline in burned area because they have a dampening effect onfire (Kahiu andHanan 2018). On the other
hand, vegetation trends in grasslands in southernAfrica (increasing VOD) and in forests in SouthAmerica
(decreasing VODwith increasing FAPAR) indicate increases in herbaceous biomass and reductions inwoody
vegetation cover (Andela et al 2013,Marle et al 2016)which promotes fire spread and contributes to positive
trends in burned area. This is consistent with earlier findings that pasture burning increases burned area after
deforestation in the Amazon (Cano-Crespo et al 2015). Hence ourwork confirms earlier observational and
modelling studies (Krawchuk andMoritz 2011,Daniau et al 2012, Pausas andRibeiro 2013, Kelley and
Harrison 2014) suggesting that increased biomass leads to increased fire in fuel-limited regions but decreased
fire in forests. Recent vegetation trends such as greening have contributed to observed changes infire, but
greening involves diverse changes in vegetation properties and thus produces complex though predictable
impacts on burned area.

Our understanding of the role of vegetation changes infire dynamics could certainly be improvedwithmore
data about fuel loads andfire-relevant plant traits and how these changewith vegetation changes (Archibald et al
2018). To reduce the current uncertainty about futurefire regimes (Settele et al 2014), large-scale, long-term,
and temporally consistent datasets onfire andfire-relevant vegetation properties are the necessary prerequisite
for anmore informed development of global firemodels.
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