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Abstract

The apparent decline in the global incidence of fire between 1996 and 2015, as measured by satellite-
observations of burned area, has been related to socioeconomic and land use changes. However,
recent decades have also seen changes in climate and vegetation that influence fire and fire-enabled
vegetation models do not reproduce the apparent decline. Given that the satellite-derived burned area
datasets are still relatively short (<20 years), this raises questions both about the robustness of the
apparent decline and what causes it. We use two global satellite-derived burned area datasets and a
data-driven fire model to (1) assess the spatio-temporal robustness of the burned area trends and (2) to
relate the trends to underlying changes in temperature, precipitation, human population density and
vegetation conditions. Although the satellite datasets and simulation all show a decline in global
burned area over ~20 years, the trend is not significant and is strongly affected by the start and end year
chosen for trend analysis and the year-to-year variability in burned area. The global and regional
trends shown by the two satellite datasets are poorly correlated for the common overlapping period
(2001-2015) and the fire model simulates changes in global and regional burned area that lie within
the uncertainties of the satellite datasets. The model simulations show that recent increases in
temperature would lead to increased burned area but this effect is compensated by increasing wetness
or increases in population, both of which lead to declining burned area. Increases in vegetation cover
and density associated with recent greening trends lead to increased burned area in fuel-limited
regions. Our analyses show that global and regional burned area trends result from the interaction of
compensating trends in controls of wildfire at regional scales.

1. Introduction

Despite the occurrence of major catastrophic wildfires in recent years (Cruz et al 2012, Dennison et al 2014,
Stephens et al 2014, Bowman et al 2017), total global burned area (BA) apparently declined between 1996 and
2015 (Van Lierop et al 2015, Doerr and Santin 2016, Andela et al 2017). This finding is based on satellite-derived
burned area data such as from the Global Fire Emissions Database (GFED) (Giglio et al 2013). GFED extends
burned area estimates from the MODIS sensor (Moderate-Resolution Imaging Spectroradiometer, mid-2000 to
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2015) for the period 1996-2000 with active fire hotspots from VIRS (Visible and Infrared Scanner) and ATSR
(Along-Track Scanning Radiometer). The merging of the burned area estimates from different sensors likely
affects the computation of burned area trends (Giglio et al 2013). Other burned area datasets have also been
derived from MODIS but using different retrieval algorithms and spatial resolutions (Chuvieco et al 2018, Giglio
etal 2018). Comparisons of these datasets show similar spatial patterns of burning but some large differences in
global and regional total burned area (Chuvieco etal 2016, 2018, Humber et al 2019). Generally, the relatively
short period covered (15-20 years) makes it difficult to achieve a robust quantification of burned area trends.

The apparent recent decline in global burned area has been associated to human activities, specifically
population growth, agricultural expansion and land-use changes mostly in northern-hemisphere Africa (Andela
etal 2017). However, the incidence of wildfires is influenced by many factors including climate, ignition sources,
and vegetation properties (Bowman et al 2009, Krawchuk et al 2009, Moritz et al 2012, Bistinas et al 2014, Knorr
etal2014). The impact of changes in climate on fire are obviously regionally specific, although high temperatures
and increasing summer drought have been invoked as the cause of recent extreme fire seasons (Holden et al
2018, Turco et al 2018) and climate change hasled to an increase in wildfire season length over large parts of the
land area (Jolly et al 2015). On the other hand, large parts of the world such as the African Sahel have experienced
widespread increases in vegetation cover and above-ground biomass (Liu et al 2015, Zhu et al 2016, Brandt et al
2017) which affects fuel availability and thus likely fire incidence and burned area. The influence of such changes
on recent trends in global burned area has yet to be adequately assessed.

Fire-enabled dynamic global vegetation models (DGVMs) explicitly account for the effects of climate,
humans and vegetation on fire occurrence and could potentially be used to assess controls on burned area trends
(Hantson et al 2016). However, state-of-the-art DGVMs do not reproduce the observed decline in global burned
area: half of the DGVMs from the Fire Model Intercomparion Project (FireMIP) underestimate the apparent
decline in global burned area, while the other half show an increase in global burned area (Andela et al 2017).
These differences in behaviour suggest that some functional relationships and associated parameterisations are
poorly constrained in these models. Indeed, analyses of the FireMIP simulations suggest that, while they
represent the climate controls on burned area reasonably well, they underestimate the sensitivity to previous-
season plant productivity and have over-simplistic representations of the influence of human activities on
burned area (Forkel et al 2019). Empirical fire models (Moritz et al 2012, Bistinas et al 2014, Forkel et al 2017)
provide an alternative and arguably better approach to reproduce observed fire dynamics and to quantify the
relative importance of climate, vegetation and human factors on temporal changes in burned area.

In this paper, we first assess the robustness of trends in global burned area using two data sets and taking into
consideration the impact of the sampling period and time series length. We then use a recently developed
empirical fire model to analyse the relative importance of recent climate, human population, and vegetation
changes on these trends.

2.Data and methods

2.1.Burned area data
We analysed two global burned area satellite datasets:

+ GFED4 (Global Fire Emissions Database, version 4, 1996-2015 (Giglio et al 2013)), based on MODIS 500 m
data and prolonged before 2001 with ATSR and VIRS active fire observations; and

+ FireCCI50 (European Space Agency Climate Change Initiative, Fire_ CCI, version 50, 2001-2015 (Chuvieco
etal 2018)), based on MODIS 250 m data.

We simulated burned area using an empirical fire model based on the SOFIA (Satellite Observations for Flre
Activity) approach, which estimates monthly burned area from observed time series of land cover, vegetation,
climate variables and human population density (Forkel et al 2017).

All burned area and ancillary datasets were either obtained at or aggregated to 0.25° x 0.25° spatial
resolution.

2.2. Trend analysis

We performed a multi-temporal trend analysis to assess the effects of sampling period, time series length, and
year-to-year variability on estimated trends (McKinley et al 2011). We computed trends for different periods
within the time series, where the periods are all possible combinations of first and last years with time lengths >8
years within the time series (R package greenbrown version 2.4.3). Trends for each time period were computed
from annually aggregated total burned area based on linear quantile regression to the median. Quantile
regression is more robust than ordinary least squares regression because it reduces the effect of single extreme
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years (i.e. years with extreme high burned area) on the estimated trend. Trend slopes were expressed as
percentage of change relative to the multiyear mean of the time series. The two-tailed Mann-Kendall trend test
was used to estimate the significance of the trends (Mann 1945, Kendall 1975). All analyses were done in the R
software (R Core Team 2018) (an overview of the packages and functions used is provided in supplementary
table 3).

2.3. Predictor data

Previous studies have identified a number of climatic variables, vegetation properties and socio-economic
factors that either directly control or are surrogates for known mechanistic controls on fire occurrence and
spread (Aldersley et al 2011, Bistinas et al 2014, Forkel etal 2017, 2019). For example, the number of wet days
(WET) provides a measure of the average length of dry periods, while monthly maximum temperature (TMAX)
and monthly diurnal temperature range (DTR) are measures of energetic constraints on fuel drying. Human
population density (PD) has been widely used as a predictor of ignitions and/or fire suppression (Knorr et al
2014, Hantson et al 2015). The type of natural land cover (i.e. grassland, forest) influences both fuel availability
and fire type. Measures such as vegetation greenness (i.e. fraction of absorbed photosynthetically active
radiation, FAPAR) from optical satellite observations and vegetation optical depth (VOD) from microwave
satellite observations provide measures of different changes in vegetation properties. Changes in FAPAR
represent changes in green leaf cover and biomass (Myneni and Williams 1994) and hence FAPAR and related
variables have been previously used as proxy for fuel loads in fire modelling (Pausas and Ribeiro 2013, Knorr et al
2014). VOD is proportional to the fuel moisture content (FMC) and aboveground biomass (BM) of vegetation
(Jackson and Schmugge 1991, Sawada et al 2016):

VOD = b x FMC x BM

where b is a conversion factor that varies with vegetation type and depends on the frequency of microwaves
(Griend and Wigneron 2004). Consequently, changes in VOD represent either changes in ecosystem biomass
and/or fuel moisture content (Chaivaranont et al 2018, Fan et al 2018). Woody vegetation, mainly trees,
dominate the above-ground biomass and total vegetation water content of an ecosystem. As a consequence,
VOD is sensitive to changes in tree biomass (Liu et al 2013) and tree cover (Brandt et al 2017). Based on these
sensitivities, FAPAR and VOD trends imply different changes in vegetation structure (Andela et al 2013) and
hence might have different impacts on the estimation of burned area (Forkel et al 2017).

We used these climate, human population density, land cover and vegetation indices as input to the SOFIA
model in order to assess changes in controls on fire. Climate data (WET, TMAX, DTR) were taken from the CRU
TS3.2 dataset (Harris er al 2014). Human population density (PD) was taken from the global gridded data set of
changes (Pesaresi et al 2013). Land cover was taken from the Land cover_CCI dataset (version 2.0.7, 1992-2015)
(Lietal 2018). We translated land cover classes to the fractional coverage of plant functional types (PFT) per
0.25° grid cells using the cross-walking approach (Poulter et al 2015, Li et al 2016) with the conversion factors
and PFT definitions as in Forkel et al (2017). The fractional coverage of PFT's was then aggregated to fractional
coverage of trees, shrubs, herbaceous vegetation, and croplands. Vegetation changes were assessed by using
FAPAR from the GIMMS3g dataset over the period 1982-2011 (Zhu et al 2013). VOD was obtained from a
harmonized dataset of several passive microwave satellites over the period 1993-2012 (Liu e al 2011). Temporal
gaps in both datasets were filled in two steps: firstly, by replacing seasonal (winter) gaps by the observed
minimum value in each pixel and secondly, by filling remaining gaps with a smoothing spline.

2.4. SOFIA model

SOFIA is a generic model approach that allows the prediction of burned area using various model structures
(Forkel et al 2017). In the version of the SOFIA model applied here, burned area (BA) was simulated on monthly
time steps per 0.25° grid cells based on the fractional coverage of different land cover types (LC), and on
controlling functions based on the predictors FAPAR, VOD, WET, TMAX, DTR and PD:

BA= Y LCjsf (FAPAR);+f (VOD);sf (WET);sf (TMAX);sf (DTR);+f (PD)
i={T,$,H,C}

where T, S, H, and C are the fractional coverage of trees, shrubs, herbaceous vegetation, and croplands per 0.25°
grid cells, respectively. FAPAR and VOD were used as average values over the 12 precedent months to account
for the year-to-year variability in vegetation conditions.

The controlling functions f(x) are logistic functions:

mx
f(x) = 1+ e—slx(x—xo)

where the parameters mx, X0, and sl vary for each dataset x and by land cover type (Forkel et al 2017). Values of
f(x) were trimmed to the range between zero (i.e. complete restriction of fire) and unity (complete allowance),

3



10P Publishing

Environ. Res. Commun. 1(2019) 051005 W Letters

allowing the response functions to be represented as an exponential (supplementary figure 1 is available online at
stacks.iop.org/ERC/1/051005/mmedia). The parameters of the controlling functions were estimated by
optimizing the simulated monthly burned area from the SOFIA model against the GFED4 dataset for selected
grid cells (supplement 1, supplementary table 1).

The SOFIA model simulations cover the period from 1994 (12 months after the beginning of the VOD
dataset) until the end 0f 2011 (end of the FAPAR dataset). There were no harmonized long-term FAPAR and
VOD datasets available that would allow us to run SOFIA simulations for the full periods of the GFED4
(1996-2015) or FireCCI50 (2001-2015) datasets.

The SOFIA model can be used to assess the relative contribution of a control x on the dynamics of burned
area [BA(x)]:

BA() = ) LCHf(x)

i={T,5,H,C}
This approach assumes that only a single factor x (e.g. FAPAR) controls burned area while all other factors

have no effect on burning. In the following we refer to BA(x) as the ‘marginal burned area’. We summed monthly
BA and BA(x) time series to annual totals for the computation of trends. BA(x) time series are shown as
anomalies relative to the average multiyear (1994-2011) total BA(x) for visual purposes in figure 2.

SOFIA reproduced global spatial patterns of burned area in comparison with the GFED4 and FireCCI50
burned area datasets but simulated global total burned area (295 Mha yr ') that is lower than the range from
satellite datasets (supplementary figure 2). However, SOFIA reproduced the year-to-year variability and burned
area trends within the uncertainties of the datasets in most regions (supplementary figures 3 and 4).

3. Variability in global burned area trends

We confirm previous studies that global burned area apparently declines over ~20 years (Andela et al 2017): The
GFED4 and FireCCI50 datasets showed declining global burned area of —0.74% yr~* between 19962015 and of
—0.66% yr~* between 20012015, respectively (figure 1). However, these trends are not significant.
Furthermore, there is poor agreement in the trend shown by the GFED4 and FireCCI50 datasets for the period
with overlap (2001-2015): The GFED4 dataset shows a stronger decline (factor 1.8, —1.22% yr~2) than the
FireCCI50 dataset (—0.66% yr ™2, figure 1(d)). Hence, the apparent decline in global burned area in GFED4 and
FireCCI50 is not confirmed for the common period of these datasets.

The satellite data sets have a limited temporal coverage, and the identification of trends is strongly affected by
years with abnormally high or low burned area at the beginning and end of the time series. In particular, the last
three years 2013—2015 have very low global burned area and are the main cause of the reported decline over
1996/2001-2015 (figure 1(c)). On the other hand, 2011 had the largest global burned area in the FireCCI50
dataset and the third largest burned area in the GFED4 dataset and this would result in a plateau or a positive
trend in burned area if the analysis were terminated in this year. The GFED4 dataset showed mostly significant
declining trends (p < 0.05, Mann-Kendall trend test) if the first analysis year is between 1998 and 2002 and the
last year is 2014 or 2015. The FireCCI50 dataset did not show a significant trend in global burned area for any
sampled period (supplementary figure 3(b)). The estimated trend slopes for different time periods are not
correlated (r = 0.13) between the two datasets (figure 1(d)).

Most of the overall decline in burned area occurs in northern-hemisphere Africa, southern-hemisphere
South America, central Asia, and Australia, whereas large parts of southern-hemisphere Africa had increasing
burned area (figure 1(a), supplementary figure 4). In general, the sign of the regional trends are consistent
between the two sets of observations even though the slopes differ (figure 2). However, very few of the observed
regional trends are significant.

The SOFIA model also shows a (non-significant) decline in global burned area between 1994 and 2011.
Opverall, the SOFIA model had mostly declining trends (figure 1(e)), especially if the first year of the analysis is
before 2000 (supplementary figure 3(c)). In the period of overlap between the satellite observations and the
simulation (2001-2011), there is agreement between the SOFIA model and the FireCCI50 dataset that there is no
significant trend (or a slight positive tendency) in global burned area, whereas the GFED4 dataset shows a
significant negative trend (figure 1(e), left panel). For the full period of each dataset and the common
overlapping period, trends in simulated burned area from the SOFIA model are within the uncertainties of the
satellite datasets.

The satellite datasets and the SOFIA model all show significant declining burned area in northern
hemisphere Africa (figures 2(a), (f)). This region dominates the global decline in burned area. Southern-
hemisphere Africa showed a tendency towards increasing burned area (figures 2(b), (g)). The FireCCI50 dataset
and the SOFIA model had significant declining burned area in northern hemisphere South America
(figure 2(h)). The satellite datasets suggest a non-significant decline and the SOFIA model a stable burned area in
southern hemisphere South America (figures 2(d), (i)). The satellite datasets show a significant decline in burned
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Figure 1. Variability in global burned area trends from satellite datasets and the SOFIA model. (a) Grid-cell level trends in annual
burned area from the GFED4 dataset for the period 1996-2015. Trends were not computed in grid cells with infrequent fire (grey
areas, i.e. BA > 0inless than 8 years). (b) Global annual total burned area and trends. None of the trends is significant. (c) Variability
in the global burned area trend from the GFED4 dataset depending on the period (first to last year) for which the trend was calculated.
Each point represents the global burned area trend slope as percentage to the mean global burned area for the period. Point symbols
denote the significance according to the Mann-Kendall trend test. The grey rectangle highlights the overlapping period (2001-2011) of
the two datasets and the SOFIA model. Supplementary figure 3 shows the same figure for the FireCCI50 dataset and the SOFIA model.
(d) Comparison of the global burned area trend slope for different periods between the GFED4 and FireCCI50 datasets for periods of
> 8 years within 2001-2015. Larger points reflect trends based on longer periods (max 15 years). (e) Distribution of the global burned
area trend slope from the GFED4 (i.e. the points from panel (c)), FireCCI50 datasets and the SOFIA model for the overlapping period
(2001-2011) and for the full period of each dataset (GFED4: 1996-2015, FireCCI50: 20012015, SOFIA: 1994-2011). Significant
trends are denoted with a grey-coloured * symbol (p < 0.05, Mann-Kendall trend test).

areain central Asia and Australia whereas the SOFIA model shows no trend in these regions (supplementary
figure 4). In the following, controls on regional burned area trends will be assessed only for northern- and
southern-hemisphere Africa and South America where trends are registered in satellite datasets and reproduced
by SOFIA. The satellite datasets and the SOFIA model show a decline in global burned area overall but
differences between the datasets prevent an accurate quantification of this decline.

4. Controls on regional burned area trends

The SOFIA simulations suggest that changes in climate, vegetation and human population had regionally
diverse effects on marginal burned area and together shape the overall regional burned area trends (figure 2).

In northern-hemisphere Africa, the decline in burned area was driven by significant declines in the marginal
burned area associated with population density, number of wet days and precedent FAPAR while maximum
temperature caused a non-significant increase in the marginal burned area (figure 2(a)). According to the SOFIA
model, increases in population density, wet days and FAPAR in tree-covered regions all cause a decline in burned
area (supplementary figures 1(a), (c) and (d)). Thus, the positive trends in FAPAR (‘greening’) with a
simultaneous increase in tree cover at the expense of herbaceous and shrub cover in northern-hemisphere Africa
(supplementary figures 5 and 6), coupled with an increase in the number of wet days per month, and with
increasing population density all contribute to reducing the amount of fire.

In southern-hemisphere Africa, however, the controls on burned area counteracted one another, resulting
in no trend in simulated burned area. The marginal burned area declined because of increases in population
density and number of wet days but increases in maximum temperature and VOD contributed to increasing
marginal burned area (figure 2(b)). Strong positive trends in VOD occurred especially in regions dominated by
herbaceous vegetation (supplementary figures 5 and 6). The fire-suppressing effects of increasing wetness and
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Figure 2. Trends and controls in regional burned area. Panels (a)—(d) show regional annual totals and trends of burned area (BA) and
the marginal burned area, which is controlled by a single factor (BA(x) anomaly relative to mean BA(x) in 1994-2011). Trends denoted
with a* star symbol are significant (p < 0.05, Mann-Kendall trend test). Panel (e) shows the spatial extent of the regions

(NHAF = Northern-hemisphere Africa, SHAF = Southern-hemisphere Africa, NHSA = Northern-hemisphere South America,
SHSA = Southern-hemisphere South America). Panels (f)-(i) show distributions of the regional burned area trend slope from the
GFED4, FireCCI50 datasets and the SOFIA model for the overlapping period (2001-2011) and for the full period of each dataset.
Results for other regions are shown in supplementary figure 4.

increasing population density compensate the tendency for increased burned area due to an increase in
herbaceous fuels and temperature.

In both northern and southern hemisphere South America, population density contributed to declining
marginal burned area and increasing temperatures and FAPAR contributed to increasing burned area
(figures 2(c)—(d)). FAPAR had widespread positive trends especially in shrub or herbaceous-dominated regions
(supplementary figure 5). Increasing FAPAR in non-tree-covered regions causes increasing marginal burned
area in the SOFIA model (supplementary figure 1). In the arc of deforestation at the southern edge of the
Amazon rainforests, VOD decreased because of decreasing tree cover (supplementary figure 5 and 6) (Andela
etal2013). This decrease in VOD caused an increase in the simulated marginal burned area (figure 2(d)). Hence,
the SOFIA model results suggest that deforestation contribute to increased flammability in tropical forests. In
summary, vegetation changes in South America are diverse but overall promote increasing burned area, which is
then counteracted by changes in other factors.

5. Discussion and conclusions

Our results provide a more nuanced view of recent changes in global burned area. The multi-temporal trend
analysis approach allows us to assess the robustness of trends by accounting for the effects of individual years.
Although the satellite datasets do show a decline globally, we found that the decline is not significant, strongly
affected by the year-to-year variability in burned area, mostly caused by the last three years (2013-2015) with low
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global burned area, and shows major differences between satellite datasets. The detection of trends in (satellite)
time series is generally hampered by changes in the underlying sensor (Tian et al 2015, Hammond et al 2018) and
by the year-to-year variability and noise (Forkel et al 2013), which increases the number of years required to
detect trends (Weatherhead et al 1998). Our results suggest that trends in burned area need to be examined with
(1) longer and MODIS-independent satellite time series (e.g. by exploiting the AVHRR or Landsat archives); (2)
with long-term regional observations (Kasischke and Turetsky 2006, Miiller ef al 2015, Doerr and Santin 2016);
and (3) with independent fire-related variables (Kaiser et al 2012, Santin et al 2016).

Even with longer records, the interplay of climate, vegetation and human controls on fire will pose
challenges for the attribution of the trends. Interpretations based on bivariate relationships only reflect the
emergent controls on fire trends; attribution to fundamental underlying controls requires a more sophisticated
approach using multivariate statistical or machine learning approaches (Bistinas et al 2014, Forkel et al 2019).
Only by combininglong time series and advanced analytical methods will it be possible to make robust
statements about changes in fire regimes and the underlying controls.

The ability to reproduce recent trends in global burned area has been used as an indication of the poor
performance of fire-enabled DGVMs (Andela et al 2017). This conclusion needs to be carefully re-assessed.
DGVMs have regionally various performances in simulating burned area (Forkel et al 2019) and hence
comparison of global trends might be misleading. Uncertainties in the satellite datasets also challenge the
statement that ‘fire models were unable to reproduce the pattern and magnitude of observed declines’ (Andela
etal2017). The SOFIA model, in common with some of the fire-enabled DGVMs, has a weaker decline in global
burned area (1994-2011) than the GFED4 dataset (1996—2015) but globally and in northern-hemisphere Africa
it has comparable trends with the FireCCI50 dataset in the overlapping period.

As fireis influenced by the interplay of climate, vegetation, and human activities, changes in these controls
can cause diverse changes in fire and burned area. The SOFIA model indicates that the decline in northern-
hemisphere Africa is associated with increasing population density (Andela and van der Werf2014, Andela et al
2017) but with an additional effect from increasing wetness. At the global scale, temperature and population
density show positive and negative emergent relationships with burned area, respectively (Moritz et al 2012,
Bistinas et al 2014, Knorr et al 2014, Forkel et al 2019). Our simulations with the SOFIA model show that the
impacts of increases in population density and warming can counteract one another, resulting in weakened
trends or stable burned area in many regions.

Changes in vegetation properties are important controls for regional trends in burned area. Northern-
hemisphere Africa has experienced greening and increases in woody vegetation cover in recent decades
(Fensholt eral 2013, Brandt et al 2017). Our results indicate that such a shift towards coarser fuels contributed to
the decline in burned area because they have a dampening effect on fire (Kahiu and Hanan 2018). On the other
hand, vegetation trends in grasslands in southern Africa (increasing VOD) and in forests in South America
(decreasing VOD with increasing FAPAR) indicate increases in herbaceous biomass and reductions in woody
vegetation cover (Andela et al 2013, Marle et al 2016) which promotes fire spread and contributes to positive
trends in burned area. This is consistent with earlier findings that pasture burning increases burned area after
deforestation in the Amazon (Cano-Crespo et al 2015). Hence our work confirms earlier observational and
modelling studies (Krawchuk and Moritz 2011, Daniau et al 2012, Pausas and Ribeiro 2013, Kelley and
Harrison 2014) suggesting that increased biomass leads to increased fire in fuel-limited regions but decreased
fire in forests. Recent vegetation trends such as greening have contributed to observed changes in fire, but
greening involves diverse changes in vegetation properties and thus produces complex though predictable
impacts on burned area.

Our understanding of the role of vegetation changes in fire dynamics could certainly be improved with more
data about fuel loads and fire-relevant plant traits and how these change with vegetation changes (Archibald et al
2018). To reduce the current uncertainty about future fire regimes (Settele et al 2014), large-scale, long-term,
and temporally consistent datasets on fire and fire-relevant vegetation properties are the necessary prerequisite
for an more informed development of global fire models.
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