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Abstract: Tropical forests are known for hosting about half of the global biodiversity, and therefore
are considered to be a fundamental part of the Earth System. However, in the last decades,
the anthropogenic pressure over these areas has been continuously increasing, mostly linked to
agricultural expansion. This has created great international concern, which has crossed the limits of
national policies. A clear example was the last crisis suffered this year (2019) in the Amazon, and
in general, in tropical South America (SA), due to the increasing fire activity in the region, which is
strongly linked to deforestation and forest degradation. International media extensively informed
the world about fire activity based upon active fire data, which provided quick but incomplete
information about the actual fire-affected areas. This short paper compares fire occurrence estimations
derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) data of active fires and
from burned area products for the first 10 months of 2019 in SA. Results show a significant increase in
fire activity over the full-time series (2001–2018) in Bolivia, Paraguay and Venezuela, while Brazil
shows a much higher BA than in 2018, but with values around the average burned area of the whole
time series.
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1. Introduction

Satellite Earth data is an ideal tool to estimate the extent and impacts of different natural and
human-caused hazards, as it provides a global and systematic observation of ground conditions at
different spatial, spectral and temporal resolutions. After the launch of the first Landsat satellite in
1972, remote sensing images have been used for the different phases of fire management: before the
fire, to estimate fire danger conditions; during the fire, to detect active fires and estimate fire behavior,
and after the fire, to analyze fire effects and vegetation recovery [1].

Satellite images provide an objective estimation of actual fire occurrence, either by observing the
thermal anomalies caused by active fires (AFs), or by detecting the changes in surface reflectance as
a result of vegetation burning or scorching. The former approach is based on the high increment of
ground emittance in the middle infrared (around 3.5 µm) caused by the high fire temperatures. This
facilitates the detection of AF pixels as well as the energy they release (often termed fire radiative
power (FRP)) [2]. On the other hand, the classification of the post-fire signal generally relies on the
decrease in near-infrared reflectance as a result of burning, which is temporally more persistent than
AFs. Yet the spectral contrast of burned and unburned signal is less sharp than the thermal anomaly,
and burned pixels may be confused with other seasonal changes.

Characterization of fire occurrence from burned areas (BAs) is more precise than from AFs, as the
latter only provides a sample of fire activity, which is the vegetation burning at the satellite overpass,
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while BA characterization includes the discrimination of the complete burned patches. Obviously, this
implies that the classification of BAs is accurate enough, which is quite challenging, as other changes in
reflectance conditions (agricultural practices, seasonal floods, clouds, cloud shadows, etc.) may affect
the BA detection [3].

Tropical forests house over half of the known species on this Earth [4]. Their influence on
Earth system processes is critical, via water transpiration and cloud formation, photosynthesis and
respiration, and atmospheric circulation [5]. Fire is one of the main factors affecting forest degradation
in tropical regions, and mostly in dry years where these regions become a net source of carbon [6].
The rainforest of the Amazonian basin is particularly sensitive to fire occurrence, as traditional practices
of shifting cultivation have evolved in the last decades to more intensive crop production (sugar cane,
soybeans, palm oil: [7]) and cattle farming [8], oriented towards the international market. Recently this
situation has been enhanced by the US–China trade conflicts, which have implied a severe increase of
Brazilian soy production [9]. Mining has also severe impacts in the Amazonia region, including oil
exploration, as well as the extraction of gold and other metals [10].

The recent political change in Brazil was considered a potential factor of increasing deforestation
in the country, as the new government was in favor of promoting the expansion of crops and ranging,
while reducing the conservation policy of previous governments, and questioning the rights of
indigenous preservation areas. All these policies have been shown to be closely related to deforestation
and increasing fire occurrence [11,12]. These worries seemed to be confirmed when the first news
of Amazonian fires emerged at the beginning of July 2019. The declarations of the French president
Emmanuel Macron initiated a diplomatic crisis between France and Brazil, later aggravated by the
inclusion of Brazilian Amazonian fires in the agenda of the G-7 meeting held in Biarritz (South of
France) in August 2019.

This controversy fueled the interest of the media about fires in the region, and estimations on
actual fire occurrence started to be published. The assumption was that fire activity was significantly
higher than in ordinary years as a result of Brazilian President Jair Bolsonaro’s policies [13]. Maps were
published in newspapers and TVs showing fire activity in the whole continent based on AF detections
mostly obtained by NASA and the Brazilian Space Research Institute (INPE). The main headlines
indicated that these fires were considerably higher than usual: “There have been more than twice
as many fires in Brazil this year as there were over the same period in 2013” [14], “Brazil’s Amazon
rainforest is burning at a record rate” [15] or “This year has seen the highest number of fires in Brazil
since 2010” [16], although the latter article indicated that worse fire seasons occurred in the early 2000s,
and also that other countries of the region were similarly being affected by severe fires.

Near-real-time information is obviously demanded by media, but these quick estimations of fire
activity can only be based on AF detections, which—as mentioned above—are only a sample of the
actual fire activity. Therefore, the most accurate estimations require classifying burned areas, which
take longer to process. Unfortunately, when these more precise estimations are obtained, media interest
has already declined, and therefore public controversies are not always very well informed.

This short paper explores the appraisal that was performed during the political crisis of 2019
based on AF information, and it compares the estimated numbers with trends derived from a global
BA product. We analyzed whether the actual fire occurrence estimated by AF pixels is equivalent to
that estimated from BAs, and whether the anomalies were significant versus previous years and a
longer time series. Since fires affected not only Brazil, but other nations in the region, we have obtained
BA information for all South American countries, and have calculated estimations of total BAs for
2019 (January to October, the most important months for fire occurrence), as well as anomalies of 2019
versus previous years and the full-time series derived from the MODIS sensor (2001–2018).

2. Materials and Methods

Burned area classification was based on MODIS 250m reflectance data [17], guided by thermal
anomalies [18]. We used the same algorithm developed for the Fire Disturbance project (FireCCI) of
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the European Space Agency’s Climate Change Initiative program (CCI). This algorithm is the most
advanced version of a series of BA algorithms previously developed for the FireCCI project [19,20].
This algorithm is based on spatiotemporal clusters of AF pixels, which guide the detection of thresholds
of near-infrared reflectance values to obtain burned and unburned pixels. Those thresholds vary in
space and time, and therefore are well adapted to the wide variety of post-fire impacts upon reflectance
changes [21]. This algorithm is the basis of the MODIS FireCCI51 product, which is publicly available
(currently from 2001 to 2018) at the CCI data portal (http://cci.esa.int/data, last accessed December
2019) and the Copernicus Climate Change Service (https://cds.climate.copernicus.eu/, last accessed
December 2019).

This product was validated using a statistically derived sample of 1200 Landsat pairs covering
the period from 2003 to 2014 [21]. The FireCCI51 product improved the detection of small fires in
comparison to other global BA products due to its higher spatial resolution, although a significant
underestimation of small fires (<100ha) was observed, which are important in order to correctly
estimate the actual BA, particularly in areas with a high agricultural activity [22–24]. However,
currently, the moderate resolution global BA products are the best alternative to estimate BAs at the
national, continental and global scale in a relatively short period after the fire event [3].

The objective was to obtain a quick evaluation of burned areas in South America, taking into
account that most fire activity in that continent occurs between January and October (an average
of 94% of all BA is burned in those months). We downloaded the Terra-MODIS MOD09GQ and
MOD09GA products from Earth Data via direct download (https://search.earthdata.nasa.gov, last
accessed November 2019) for the period encompassed between June 2018 and November 2019. About
29,000 daily images were downloaded distributed in 28 standard MODIS tiles of 1200 × 1200 km.
The last 6 months of 2018 were processed in order to stabilize the algorithm results, and thus obtain
correct estimates of 2019. After processing the algorithm, the date of detection (first date classified as
burned) for each 250 m pixel was obtained. These results were later aggregated to obtain monthly and
annual national statistics and also gridded maps at a 0.25-degree resolution.

From the BA results, we computed the mean and the standard deviation of the full-time
series (2001–2018) to obtain the standardized Z units ((value-mean)/standard deviation) for each
year, considering the period January–October. These values were used to detect anomalies in BAs
throughout the time series, including 2019.

3. Results and Discussion

The total BA in South America in the first 10 months of 2019 was 308,048 km2, around 70% more
than in the same period of 2018, but similar to the average BA of the time series (292,562 km2). Figure 1
shows the total BA detected by the FireCCI51 product in the six countries more intensively affected
by fires in the continent. They account for a mean of 98.62% of the total BA in South America for
the studied period (ranging from 96% to 99.5%, depending on the year). In these countries, the total
BA in 2019 was 1.71 times larger than in 2018, but only 1.05 larger than the average of the time
series 2001–2018.

A similar trend was observed in the most affected countries. Brazil, for instance, had in 2019 a
similar BA than the average of the 2001–2018 time-series (180,258 and 177,275 km2, respectively), but
the BA was 2.2 times larger than the BA estimated for 2018 (81,881 km2). The relative impact of fires
in the region was much worse in Bolivia than in Brazil. Bolivia tripled the BA of 2018 (48,187 versus
15,448 km2), and it also exceeded by 51% the average of the time series (31,819 km2). 2019 was also
clearly worse than 2018 in Venezuela (24% more BAs, with 44% above time-series average), and in
Paraguay (69% more BAs, but in this case very close to the average of the times series). Colombia and
Argentina had less BA than in 2018 and this was also well below the average BA in the time series.

Figure 1 also shows the same information, but in this case based on the number of AFs, which
was the information available to the media during the fire crisis. We observed similar tendencies to BA,
although the differences with the fire activity of 2018 were less important than for the BAs. For instance,
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in the case of Brazil, the number of AF pixels increased by 62% over 2018, but they were 7% lower
than the time-series average (while the increases in BAs were estimated as 120% and 2%, respectively).
Similarly, in Bolivia, fire occurrence based on AFs provided lower estimations than for BAs, with an
increase of 79% versus 2018 and 41% versus the time series (while the increases in BA were 212% and
51%, respectively). In Venezuela, the AF detections increased by 26% compared to 2018, and by 56%
from the average time series, which in this case is similar to these BA estimations. This information is
in line with the data reported by the BBC [16] during the fire crisis, although they were focused on
Brazil and Bolivia and in the January-to-August period.
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Figure 1. Country distribution of burned areas (BAs) and number of active fires (AFs) for 2018, 2019
and the average of the 2001–2018 period.

In terms of yearly anomalies, Figure 2 shows the temporal trends of the full-time series for both
BA and AF pixels between January and October. The trends are similar in the different countries but
the actual values are generally higher for BA trends. Most of the countries have two years that can
be clearly distinguished as the worst of the time series (i.e., having burned more than 2 standard
deviations from the average BA, or having 2 standard deviations more AFs than the average), and in
several cases those years affected more than one country. 2007 and 2010 were the worst years of the
BA time series for Brazil, being the former also for Paraguay and Colombia and the latter for Bolivia.
Argentina, Venezuela, and Paraguay were strongly affected in 2003, and Colombia also one year later.
The worst year for Argentina was 2001. The trends showed by the AFs were quite similar, although
some additional years with anomalies higher than 1 standard deviation were observed in Brazil (2005),
Bolivia (2007), and Argentina (2008). The current year (2019) has only positive anomalies for Venezuela
and Bolivia, both in terms of BAs and AFs, being one of the worst years of the time series for the
mentioned countries, especially in the case of Venezuela.
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Figure 2. Country anomalies of BAs (solid line) and AFs (dotted line) for the 2001–2019 period
(considering only from January to October).

In terms of the spatial variation of fire activity, Figure 3 shows the total BA in 2018 and 2019
for grids of 0.250 degrees. The main differences between the two years are found in the Eastern and
Southern regions of Venezuela, the border between Brazil, Bolivia and Paraguay, and the central region
of Brazil, which all show increasing fire activity. Conversely, the central and northern regions of
Argentina show lower fire activity. It is particularly interesting to observe three areas of significant fire
increase from the previous year: the Pantanal area of Brazil (Rondonia and Matto Grosso) and Santa
Cruz in Bolivia, affecting important conservation areas; the region of Goaiás, Pará, NE Matto Grosso
and Tocantins in Brazil, and South Eastern (SE) Venezuela and Northern Roraima in Brazil.

Remote Sens. 2018, 10, x FOR PEER REVIEW  5 of 8 

 

 

Figure 2. Country anomalies of BAs (solid line) and AFs (dotted line) for the 2001–2019 period 
(considering only from January to October). 

In terms of the spatial variation of fire activity, Figure 3 shows the total BA in 2018 and 2019 for 
grids of 0.25⁰ degrees. The main differences between the two years are found in the Eastern and 
Southern regions of Venezuela, the border between Brazil, Bolivia and Paraguay, and the central 
region of Brazil, which all show increasing fire activity. Conversely, the central and northern regions 
of Argentina show lower fire activity. It is particularly interesting to observe three areas of significant 
fire increase from the previous year: the Pantanal area of Brazil (Rondonia and Matto Grosso) and 
Santa Cruz in Bolivia, affecting important conservation areas; the region of Goaiás, Pará, NE Matto 
Grosso and Tocantins in Brazil, and South Eastern (SE) Venezuela and Northern Roraima in Brazil.  

  
(a) (b) 

Figure 3. Spatial distribution of BAs in South America in 2018 (a) and 2019 (b). Figure 3. Spatial distribution of BAs in South America in 2018 (a) and 2019 (b).



Remote Sens. 2020, 12, 151 6 of 8

Finally, Figure 4a shows the spatial anomalies of the BAs in 2019. They were measured
as standardized Z units from the full-time series (2001–2018) for each 0.25-degree grid cell.
The high-occurrence regions previously quoted are more clearly observed here. Very high positive
anomalies are noticeable in the most affected regions of Eastern and SE Venezuela, Central and Western
Brazil, Eastern Bolivia and Northern Paraguay. Anomalies are also observed in the central Andes of
Peru, Ecuador and Colombia, as well as in the Amazonian regions of Colombia and Peru, particularly
in the neighborhood of Pucallpa (Peru).
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Anomalies are computed as standardized Z units of BA for grid cells of 0.250 degrees. (b) Sentinel-2B
images of the area burned between the border of northern Paraguay and eastern Bolivia. Top: the pre-fire
image of 09 July 2019; bottom: the post-fire image of 17 October 2019.

The spatial patterns of 2019 also show some grid cells (marked in red in Figure 4a) that had not
previously burned during the time series. This implies that fire is being introduced into new areas,
which in the case of evergreen tropical forest are very likely to be highly vulnerable to fire effects [25].
For example, the concentration of this new BA in the SE border of Bolivia, affecting severely the
Chiquitano Dry Forest, is particularly striking (Figure 4b). Additional high anomaly cells were found
in the interior of Brazil and in Northern Paraguay. This significant increase in fire activity could also be
linked to governmental policies, with recent laws encouraging agricultural expansion [26,27].

4. Conclusions

The analysis of areas burned in 2019 in South America shows similar spatial trends to what was
already observed with AFs in near-real-time, although BA estimations are generally higher. The main
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interest of BA products relies on quantifying the actual area affected by fires while refining the analysis
of the temporal anomalies of fire activity showed by AF products. As a general summary, the high
political controversy about new fires in the region should be more clearly applicable to Bolivia and
Venezuela than to Brazil, which in 2019 had higher BAs than the previous year, but still around the
average of the full-time series since the MODIS data is available. However, it is a major concern to
identify areas in the Amazon region that were widely affected by fires in 2019 and had previously little
or no fire occurrence, including regions in Brazil, Bolivia, Paraguay, Venezuela and Peru. Agricultural
expansion has been identified by several studies as being behind the introduction of fire in these
regions, but more detailed studies need to be carried out to detect the local drivers of fire.
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