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%4 I open manner and have associated with them an indicator of their quality

traceable to reference standards (preferably Sl) to enable users to
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Generation

Sensor Calibration

Algorithm tuning to
reference data

Sensitiity analysis

PRODUCT DETAILS

General product information
Coverage, resolution
Accessibility, format, contact

PRODUCT GENERATION

Algorithm description
References
Traceability chain
Input / ancillary data
Processing information
Availability of code
Known issues register

QUALITY FLAGS

Flag name
Flag description and derivation

UNCERTAINTY
CHARACTERISATION

Uncertainty Characterisation
Method

Sources of uncertainty
Temporal Stability Uncertainty
Geolocation Uncertainty

VALIDATION

Validation method

Results

Use of good practice guidance
Assessment of the quality of
reference data

INTER-COMPARISON

Description of inter-comparison
activities
Limitations of study

Uncertainty
ion

Quality flags

Validation

Reference data
inty

inclusion

Inter-comparison

uncertainties
inclusion




Role of Metrology in EO

Pre-launch calibration

In flight calibration &
validation

o

VNIR brightness

u:{;: Sentinel family : Desert cross-calibration -+ S3A-OLCI
8 106 . with MERIS as reference sensor - 22/11/2018
537010 1-2%
T <+ S3B-OLCI
| v b [ |12% L8O
: SIS il S:;A-MSI $1%
Tm e m ow o wmowm w om 12%
h {am) ”
Graph courtesy of Meygret, CNES™ | S2B-MSI

Interoperability
between past, present
and future satellites

Robust quality indicators to ensure
that those using EO data can be
confident it is fit for purpose

STABILITY

over decades

measurements

INTEROPERABILITY COHERENCE
equivalence world Combining
wide different

TRACEABILITY

UNCERTAINTY COMPARISON

Field measurement
uncertainty

The apparent error between satellite-based and
in-situ measurements are also a result of the

uncertainty of both: but how can we quantify the
contributions separately?
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Validate satellite-based products, space
ECVs vs ground-based values

ITest conformity with GCOS requirementsl

Improvement / validation / down stream



Generate metrologically-rigorous data products NPL

Pre-flight radiometric calibration National Physical Laboratory
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http://www.qa4eo.org/

Metrological concepts

for EO

Earth observation metrology
techniques developed within the
H2020 FIDUCEO project

(www.fiduceo.eu

Flduceo

Physical effect
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function
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Table descriptor
MName of effect

Effect identifier

Effects tables

Affected term in measurement function

Maturity of
analysis

Comelation type
and form

Correlation scale

Uncertainty

Sensitivity coefficient

Validation

Maturity of uncertainty
estimate

Maturity of correlstion
zcale estimate

If mzturity of estimats
is 0 or 1, how significant
do yau expect this
effact to be?

From level xx

temporal scale type &
form [time]

spatial scale type B
form [geospatial
coordinatas]

Spectral type & form

From level xx

temparal scale [time]
spatial scale [geospatial
«coordinates]

Spectral scale

FDF shape

magnitude

Value/Parameter

A unigue name to describe the
effect

A unigue number usad to identify
the position in the uncertainty
tree or process chain

Name and standard symbol of
affected tarm

0 Effect identified, no
quantification performed (no
further information in cells
below)

1- Rough estimates only

2 - Some analysis parformed to
estimate valuas

3 - Rigorous analysis performed
0= Mot done

1— Estimated

2 — Based on analysis, unsure
about correlation shaps

3 —Strong avidence

Megligible, Minor or Significant?
For pixel level results and for
long-term  large scale results

Select one of the types defined in
f6.3andTable 2

‘What is-the correlation scale

Functional form of estimated
error distribution for the tarm,
seeTable 3

Units inwhich POF shape is
expressed {units of term, or can
be as pencentage =tc)

Waluefz) or parameterization
estimating width of PDF

Value, 2quation or
parameterisstion of sensitivity of
measurand to term

Can also flag “indudad in
uncertzinty” (by making this
equal 1)

A description of any validation of
the uncertainty &t effect level.

Usually an effect will only affect a single
term, though there may be exceptions.
The next higher-level identifier should be
reportad.

This allows for the fact in the FOR/CDR
we hawen't thought everything through
in detail and makes that very clear to
usars.

If the maturity is low, we may still be sbls
to estimate f it is negligible or minor, or
if it"s possibly significant {and therefore
n==ds more work soon)

Reference to the avidence for the
maturity asszssment, g publication,
report, weblink ste.

See §6.3 Define the level of analysis
from, then to, 2= level 0to levell, and
the relevant scales, e.g. per scan, orbit,
calibration cycle etc.

If there is a corralation with another
effact, state its identifier.

See §6.4

5ee comment in §5.3.1 where
uncertainty and sensitivity cannot be
s=parated

‘wihere the uncertainty and sensitivity
coefficient cannot be separated the
sansitivity coefficient should be one and
the uncermainty is in units of the
mazsurand.

The source of the uncertainty
informztion and validation should also be
identifizd.

RANDOM

A

uncertainty distribution

Gaussian

Rectangle

1 ]

x-a x nea

Triangular

U-distribution

Unknown

i = ajfnf3 where @ isthe
half width

u= a/-\/g where @ s
the half base

u=a/2 where a isthe
half base

Be careful when using published
literature, or a calibration
certificate, to provide . If an
expanded uncertainty is quoted,
then it's important to divide by
k (often k=2 in certificates).
The most appropriate standard
uncertainty for a digitised
Gaussian has not been fully
evaluated. Please treat as a
Gaussian, but keep this option
open for the future

Useful for when we know a
guantity must be in a range a3,
but it's equally likely to be
anywhere in that range, gg
digitisation

Useful for where we know there
is @ range a quantity is in but it's
more likely to be in the middle of
that range (£.2. when a quantity
is the difference between two
digitised values)

Useful for where we know there
is a range a quantity is in but it's
maore likely to be at the edges of
that range (g.g. where thereisa
feedback loop that switches on
and off and encourages drift to
the two ends of a temperature
range)

If the PDF is not one of these,
but a standard uncertainty can
be provided, then this is also
acceptable, @ note should be
added in documentation.

Error-covariance
structure

S..(¥) = C8,(x)C = Z!qu,kiu‘c!

SYSTEJPAATIC

[

The Errors-in-Satellite-Data “Zoo”

NOISE !
1

INDEPENDENT |
RANDOM |

Traditional
“Noise/Bias”

... ERM, NOT QUITE SURE WHAT TO CALL THIS ... BIAS classification
STRUCTURED I STRUCTURED 1 COMMON Two-part
RANDOM | SYSTEMATIC | SYSTEMATIC taxonomy



http://www.fiduceo.eu/

To define a holistic
solution for all
Copernicus Sentinel
missions (op. or pl.)
to overcome current
limitations of Cal/Val
activities.

An analysis phase:
collection of the
Cal/Val
requirements for
current and future
Sentinel missions
and survey of
existing or planned
sources of
calibration and
validation data

H2020 C. opernicus Cal/Val Solution

CCVS

Copernicus WP5S
Cal/val Solution Management
[ I T ]
| | [ |
WPl WP 2 WP 3 WP 4
Sentinel Cal/val Existing Cal/Val sources Gap Analysis and Copernicus Reference Scenario for
Reguirements g Cal/Val solution |Implementation
N S
T1.1 T2.1 T3.1 Ta.1
Optical Missions On-board calibration Instrumentation Coordination with European
technologies agencies
A L
T1.2 T2.2 T3.2 T4.2
Altimetry missions Vicarious methods on natural Calfval Methods Coordination with
targets measurement networks
.
T1.3 123 13.3 T4.3
Radar and Micro-wave Inter-satellite comparisons Measurement networks and Coordination with Copernicus
imaging missions supersites Services
A  ————
1.4 T2.4 3.4 a4
Atmospheric camposition Systematic ground-based Data distribution _ Coordination with
missions measurements international agencies
r—— —
T2.5 T3.5 T4.5
Field and aerial campaigns Performance analysis and Roadmap and sustainability
Level 3 impact analysis
£ 3
T2.6 T3.6 TA.6

Cal/Val data distribution
Services

Copernicus Cal/fval

Reference Scenario for
Implementation
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https://ccvs.eu/

Identified gaps in Cal/Val Methods

Standards National Physical Laboratry

o Definition of a standard for classification confidence, to allow for full product compatibility and
comparability.

o Development of a community accepted standard for geo-spatial uncertainties for regrided/reprojected
products.

o Define standard for thematic classification uncertainties.
Uncertainties

o Propagation of per-pixel radiance uncertainty (at L1/L2) to the final derived product (GUM).

o Uncertainty propagation needs to consider the assumptions made by retrieval algorithms and all
uncertainties from input products (metrological approach)

intercomparisons

o For the inter-comparisons, comparisons need to be done in the context of their associated uncertainties and
the need for the development of robust statistical comparison methods for non-simultaneous products
(FRP)

Roadmap

o Develop a framework for the generation of FRM fire data by establishing protocols to ensure full traceability
— a CEOS approved good practice guide?

o Define a community-based roadmap for FRP products to achieve CEOS Level-4 validation status.



Uncertainty characterization of the Sentinel 3 L2 FRP product
by expanding the metrological concepts developed in the FIDUCEOQ project to L2 and L3 products
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Uncertainty characterization of the Sentinel 3 L3 BA product
by expanding the metrological concepts developed in the FIDUCEOQ project to L2 and L3 products
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Framework to
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Latitude

FRP inter-comparison
Framework

(spatial context)
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g
Longitude

Mota and Wooster., 2018

In Polar mission products
detections capture snapshots
of the daily cycle -> lack of
spatial consistency

Time difference

* Relation between the high-medium-low
energy releases is the same,
independent of #detections

* Area under the curve is Fire Radiative
Energy (FRE) -> model for L4 FRP

products
(temporal context)
10» : ‘ = MSG
X ) | , =— MODIS
s |'rollover
| Mota et al., 2016

FRP (MW)
Probability density distribution function of MSG — SEVIRI FRP
detection (red) and associated power law fit (black dash) and
MCD14 (blue) for the period of (2009-2013) for a 3 by 3 MSG pixel
size area over Central African Replublic.

Angular effects?




Ex: S3 L2 FRP evaluation
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(0.5 degree cells using only 3 month of outdated processing S3 FRP product)
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Workshop Ai

The aims of the wol

¢ Present progre:
the physical sci
o |dentify stakeh
gas emissions

The output of the w

This workshop follc

cearnnd in 2018 an (

The topics covered within the theme are listed in the table below.

Theme 1: Metrology in support of the physical science basis of climate change and climate observations

Topic

Items that could be covered within the topic include

1. Atmospheric chemistry and physics

Background and large-scale trend observations of stratospheric and tropospheric greenhouse gases, including ground
and space-based total column observations and atmospheric composition products

Metrological characterisation of spectral parameters for chemical compounds (absorption cross-section, spectral line,
solar spectral irradiance)

Surface and upper-air observations of temperature, pressure and humidity / water vapour, from reference networks and
operational networks.

Reanalyses and the assimilation of atmospheric data and the utility of measurement and modelling uncertainties in
reanalyses

Traceability of measurements in developing economies and for low-cost sensor networks.

Paleoclimatological studies of atmospheric composition and historical and pre-historical temperature records

2. Oceans and hydrology

Ocean physics: measured in situ (e.g., temperature, surface and subsurface ocean currents) and remotely (e.g., sea
surface temperature, sea level, colour, and sea state)

« Qcean chemistry: pH, dissolved inorganic carbon, total alkalinity, partial pressure of carbon dioxide, salinity, nutrients,
oxygen, and isotopes

Ocean and/or hydrological modelling and reanalysis

Hydrology: water quantity variables measured in inland waters (remote/space and in situ) such as flow, water
elevations, channel bathymetry, flooded extent and other similar water quantity variables

Hydrology: water quality/chemistry variables in inland waters such as temperature, salinity, dissolved oxygen, pH,
turbidity, nutrients, etc.

3. Earth Energy Balance

« Sl-traceable Earth-observing satellites measuring outgoing radiation

« Earth albedo estimates and variability

Cloud cover and cloud radiative forcing estimates

+ Energy uptake estimates and uncertainties

Global and regional ocean temperature, circulation, and sea-level measurements

Ice-mass measurements and loss rates

Heat-flux and evaporation measurements and models

Models, measurements, and requirements to improve Earth energy budget and imbalance estimates

4. Biosphere monitoring

Forest biomass and properties (FAPAR, LAl, above ground biomass, soil carbon)
Fire monitoring and observation

Land surface temperature and albedo

Land cover classification

Ocean colour and phytoplankton

5. Cryosphere Monitoring

In situ and satellite of the marine cryosphere (area, thickness, snow cover, motion, temperature, albedo, age)

In situ and satellite observations of polar ice sheets and glaciers, high mountains and the third pole (extent, thickness,
mass balance, motion, temperature, albedo)

In situ and satellite observations of snow cover (area, thickness, precipitation, albedo, duration)

Observations of permafrost (area, thickness, temperature, active layer depth)

rasurement

supporting

jreenhouse

ing and the
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MEASURAND

R

TRACEABILITY

=

UNCERTAINTY

R,
=EE

CALCULATE

Define the measurand and
measurement model

\
-

Establish the traceability with a
diagram

/
N

.
-

Evaluate each source of
uncertainty and fill out an effects
table

v
~

J

Calculate data product and
uncertainties

\

J

Store relevant information for
present and future users

~

generate metrologically-rigorous data products

applicable to:

‘Fiducial Reference Measurements (FRMs)
are a suite of independent, fully characterised, and traceable
sub-orbital measurements that follow the guidelines outlined by
the GEO/CEOS Quality Assurance framework for Earth
Observation (QA4EO) and have value for space-based
observations.”

‘Fundamental Data Records (FDRs)
is a record, of sufficient duration for its application, of
uncertainty-quantified sensor observations calibrated to
physical units and located in time and space, together with all
ancillary and lower-level instrument data used to calibrate
and locate the observations and to estimate uncertainty.”

“Thematic Data Products (TDPs)
is a record, of sufficient duration for its application, of
uncertainty-quantified retrieved values of a geophysical
variable, along with all ancillary data used in retrieval and
uncertainty estimation.

The Quality Assurance framework for Earth Observation (QA4EQO) was established by the Committee on
Earth Observation Satellites (CEOS) to define processes and procedures to achieve the QA4EO principle.

Resources at (www.ga4eo.orq)

* Documents  summarising the
framework, and how it can be
applied to your projects

* Introductions to metrology and
uncertainty analysis

» Software tools for applying the
QA4EOQ approach

+ Case studies



http://www.qa4eo.org/
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« Documentation (PUM, ATBD, QA)
Service Architecture
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» Validation
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