# Static thermal anomalies and their contribution to global thermal activity

Gareth Roberts University of Southampton

GWIS\GOFC Fire IT Meeting : Milan, September 2024

# **Thermal Anomalies Products**

- Earth Observation (EO) Thermal Anomalies products detect thermal emissions from all sources (e.g. biomass burning, volcano's, anthropogenic activity)
- Largest use of these products is the detection of landscape fires
- Some products identity the type of thermal anomaly (e.g. MODIS, VIIRS, SLSTR)
- However, thermal classification can omit some anthropogenic sources
  - impacting validation activates (Forghani et al., 2021)
  - leading to errors in biomass burning emissions inventories (Pan et al., 2020)



Source : Pan et al., 2020

#### **Detection of Static Thermal Anomalies (STA)**

 $\hfill\square$  A static thermal anomalies dataset developed using :

- VIIRS 375 m thermal anomalies product (VNP14IMG, Schroeder et al., 2014)
  - accumulated between 2012-2021 and remapped to 500 m spatial resolution
- Ancillary datasets to constrain detections :
  - MODIS burned area product (MCD64, Giglio et al., 2016)
  - ESA CCI water bodies dataset (Lamarche et al., 2017)
  - Copernicus crop fractional cover and ESA 10 m human settlement dataset (Pesaresi and Panagiotis, 2023)
  - Smithsonian volcano database
- Static thermal anomalies (STA) identified using a series of temporal and occurrence metrics & constrained by ancillary datasets
  - e.g. number of nighttime detections, average number of annual detections, number of months of active detections etc

#### VIIRS Static Thermal Anomalies (STA) : Global Distribution

- □ Globally, 14,892 static thermal anomalies are detected over 10 years
  - STAs defined as contiguous clusters of pixels (54,444 500 m pixels)
  - includes (e.g.) petrochemical and cement production, gas flaring, mining operations, wood processing factories and refuse sites
- China, USA, Russia and India have the greatest number
  - combined 44% of global STAs
  - off-shore sites account for 14% of global total



#### VIIRS Static Thermal Anomalies (STA) : Annual **Dynamics** Global

- □ Annual variation in the number of STAs detected as being 'active'
  - STAs where a thermal anomaly is detected
  - peaks at 11,350 sites globally in 2019
- Dynamics in USA driven by thermal activity due to gas flaring \*
  - sites increased by 300 % between 2012 and 2017
- Dynamics in China result from slight reduction in STA in most sources except gas flaring \*
  - largest reduction in coal mining emissions sources (~40%)











2012 2013 2014 2015 2015 2016 2018 2018 2019 2020

600 Number

400

200



### **STA contribution to global FRP : VIIRS**

□ Results indicate :

- 2 3% of global VIIRS FRP originates from STAs
- STAs account for 20 30% of nighttime FRP
  - low level landscape fire activity and increased detection of STAs



# **STA Contribution to global FRP : MODIS**

□ Lower % of FRP originates from STAs than VIIRS

- VIIRS capacity to detect lower FRP signals (particularly at night)
- Daytime FRP from STAs0.3 2% of global total
- 6 18% FRP contribution during the night
- Diurnal variation due to improved STA detection
  - 10% higher at night
    (22:30 & 01:30)
  - lowest at 13:30
- Need to account for non-BB sources if nighttime fire activity of interest



# **STA contribution to national-level FRP**



- □ Countries with greatest percentage of FRP from STAs :
  - arid regions with no/low burned area
- □ Countries of moderate burned area include
  - China (20% of national scale FRP from STAs)
  - Russia (6%)
  - Venezuela (17%)
  - potentially large regional errors in FRP-based emissions inventories

#### **Local Scale FRP from static thermal anomalies**

- Individual STAs can have high annual FRP totals
  - Site in Russia has an annual FRP of 182,000 MW
    - North Complex fire (2020) burned 316,000 acres and FRP total 190,000 MW
    - Red Salmon Complex fire (2020)
      burned 147,000 acres and FRP total 173,000 MW

a)







Annual FRP of 182,000 MW in 2013. Also evident is the large variation in thermal activity

# **VIIRS STA : Global Fire Assimilation System**

- □ GFAS (Kaiser et al., 2012) utilises MODIS FRP to estimate landscape fire emissions
  - acknowledges inclusion of non-BB FRP sources
- □ Non-biomass burning GFAS FRP accounts for
  - 1.5 2.5% of annual FRP
- □ 10,510 0.1° grid cells contain STAs :
  - 76% of these where >90% of FRP is from STAs
- □ Global FRP impact minimal but
  - local, regional and potentially national scale emissions impacts greater
  - diurnal and seasonal emissions impact



#### **VIIRS STA : VIIRS NightFire Intercomparison**

- □ Intercompare the STAs dataset with those from a VIIRS NightFire dataset (VNF; Lui et al., 2018)
  - identifies thermals anomalies between 2012-2016 using object-orientated clustering
  - sources classified (e.g. cement, coal, gas production) based on temperature distribution
- □ Results indicate :
  - 58% agreement (8,220 VIIRS STAs match 14,281 VNF sites)
  - 7,316 unique to VNF dataset
  - 4,841 unique to VIIRS STA dataset
  - of the 12,691 VIIRS STAs active between 2012 2016
    - 8,220 (65%) agree and 4,471 (42%) are unique
  - VIIRS STA dataset underestimates gas flaring activity on land
    - less 'persistent' on monthly and annual time scales
  - VNF dataset underestimates thermal activity associated with (e.g.) steel production, solid waste disposal and electricity generation



#### **VIIRS STA : VIIRS NightFire Intercomparison**

□ 0.25° grid cells where  $\geq$ 50 % of the STAs match or are unique to either dataset

- Difference in global FRP due to false detection of deforestation fires
  - VNF : 68% of pixels have < 4500 m<sup>2</sup> deforestation; 14% have >300,000 m<sup>2</sup> deforestation
  - VIIRS STA : 89% of pixels have < 4500 m<sup>2</sup> deforestation; 0.44% have >300,000 m<sup>2</sup> deforestation

| Region | Matching FRP    | FRP Unique to VNF | FRP Unique to VIIRS |
|--------|-----------------|-------------------|---------------------|
| Global | 54.7 GW (91 %)  | 3.7 GW (6%)       | 1.7 GW (3%)         |
| ROI 1  | 3378 MW (19%)   | 13,138 MW (74%)   | 1,265 MW (7%)       |
| ROI 2  | 44,215 MW (70%) | 17,332 MW (27%)   | 1,854 MW (3%)       |
| ROI 3  | 86,024 MW (74%) | 17,596 MW (15%)   | 12,957 MW (11%)     |
| ROI 4  | 26,343 MW (77%) | 7,383 MW (22%)    | 336 MW (1%)         |
| ROI 5  | 3,979 MW (94%)  | 243 MW (6%)       | 0                   |



 >90% of VIIRS thermal anomalies in flaring regions [ROIs 1-5] are detected < 20 times annually on average

# Conclusion

□ Thermal emissions from static thermal anomalies :

- minor (1 3%) contribution during the day BUT
- 10 20% of FRP at night from non-BB sources
  - much lower FRP at night but potentially impactful in climate\fire research

□ FRP-derived emissions databases may erroneously include anthropogenic sources

- local and national-scale impacts can be large
  - (e.g.) large disparities between inventories in Middle East (Pan et al., 2020)

□ VIIRS STA dataset has high omission rate over gas flaring regions

- 6 74 % FRP omission (28% on average over five sites)
  - FRP contribution appears low in these regions
    - approach designed to detect more persistent (months & years) STAs and to limit false detections