Data driven fire prediction

Some updates

Francesca Di Giuseppe

European Centre for Medium-Range Weather Forecasts, Reading, UK

What are the causes of landscape fires

Fire Weather index Only weather is accounted for

- It correlates with fire activity in weather limited biome
- It has limitation in **fuel** limited biomes

Probability of Fire Data –driven model *Mc Norton et al (2024) GRL*

Fire Occurrence probability Index (based on rescaling the FWI to account for fuel through VOD obs) Di Giuseppe (2023) ERL

Is not only about using ML: the Importance of training data

A Data-driven Probability-of-Fire (PoF) Model

Variable	Input Category	Frequency	Source	Reference
Precipitation	Weather	Daily	ERA5-Land	Muñoz-Sabater et al. 2021
2m Temperature	Weather	Daily	ERA5-Land	Muñoz-Sabater et al. 2021
2m Dewpoint Temperature	Weather	Daily	ERA5-Land	Muñoz-Sabater et al. 2021
10m Wind Speed	Weather	Daily	ERA5-Land	Muñoz-Sabater et al. 2021
Live Leaf Fuel Load	Fuel	Daily	Fuel Model	McNorton et al. 2024a
Live Wood Fuel Load	Fuel	Daily	Fuel Model	McNorton et al. 2024a
Dead Foliage Fuel Load	Fuel	Daily	Fuel Model	McNorton et al. 2024a
Dead Wood Fuel Load	Fuel	Daily	Fuel Model	McNorton et al. 2024a
Dead Fuel Moisture Content	Fuel	Daily	Fuel Model	McNorton et al. 2024a
Live Fuel Moisture Content	Fuel	Daily	Fuel Model	McNorton et al. 2024a
Low Vegetation LAI	Fuel	Monthly	Satellite (multi- sensor)	Boussetta and Balsamo, 2021
High Vegetation LAI	Fuel	Monthly	Satellite (multi- sensor)	Boussetta and Balsamo, 2021
Vegetation Optical Depth	Fuel	Monthly	Satellite (SMOS)	Wigneron et al 2021
Type of Vegetation	Ignition	Fixed	ECLand	Boussetta et al., 2021
Urban Fraction	Ignition	Fixed	ECLand	McNorton et al. 2023
Orography	Ignition	Fixed	ECLand	Boussetta et al., 2021
Lightning	Ignition	Daily	ERA5	Hans
Population Density	Ignition	Fixed	Gridded Population of the World (GPW) v4 – SEDAC (2020, 2.5 arcmin to 9km)	Center for International Earth Science Information Network - CIESIN
Road Density	Ignition	Fixed	Global Roads Inventory Dataset – 2018	Meijer et al., 2018

Input data can be grouped into 3 categories:

- Weather (IFS)
- Fuel Load and State (McNorton et al., 2024)
- Sources of ignitions (various)
- Model based on Extreme Gradient Boosting library (XGBoost), using a probabilistic classifier.
- Trained on MODIS Collection 6.1 Active Fire 2010-2014 (new version added VIIRS)
- PoF, the probability of MODIS fire detection within 1 km² gridcell (underestimation of true fire count)
- Daily 10 Day Forecast
- Global 1km² / 9km²

ESS OPEN ARCHIVE

A Global Probability-of-Fire (PoF) Forecast

FIRE FORECASTING FUEL MODELLING HAZARD FORECASTING LAND SURFACE MODELLING MACHINE LEARNING WILDFIRES

I Joe Ramu McNorton 20, Francesca Di Giuseppe , Ewan Mark Pinnington , Matthew Chantry , Chris Barnard

Forecast Input : Fuel is the most important component

Vegetation Load/Moisture informed by:

- Satellite Observations
- Land Surface Modelling
- NWP Variables

Real-time and in historic:

- Global
- 9km Resolution (1km in prep.)
- Daily
- 2010-2021 (ext. in prep.)

 https://doi.org/10.5194/bg-21-279-2024

 © Author(s) 2024. This work is distributed under

 the Creative Commons Attribution 4.0 License.

 Research article | @

 A global fuel characteristic model and dataset for

 wildfire prediction

 Joe R. McNorton ⊠ and Francesca Di Giuseppe

How Does PoF Compare to Existing Forecasts?

Does the Model Forecast Extreme Events?

A key limitation of data-driven models is the inability to represent extreme events.

Day of the month EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

7

10 Day PoF FC for 15th May, 2023 (1km)

	PoF V1	PoF V2
Features	Vegetation cover/type (4) Leaf area index (2) Fuel Load (4) Fuel Moisture (3) Meteorology (4) Orography (1) Urban Cover (1)	Vegetation cover/type (4) Leaf area index (2) Fuel Load (4) Fuel Moisture (3) Meteorology (4) Orography (1) Urban Cover (1) Population Density (1) Road Density (1) Lightning (1)
Observations	MODIS	MODIS VIIRS GOESE (geostationary) GOESW (geostationary) MSG (geostationary) Himawari (geostationary)
Resolutions	1KM & 9KM, Daily	1KM & 9KM, Daily
Training Period	2010-2014	2020-2021

3 Day PoF2 1KM Forecast

NASA FIRMS Observations MODIS/VIIRS

3 Day FWI 9KM Forecast

NASA FIRMS Observations MODIS/VIIRS

State of wildfires 2023-2024

What next? A Rate of Spread module currently provides a 15 minute forecast of FRP

Uses a convolution neural network based on input data from target and neighbouring cells on

Meteorology, Land Surface Variables, Fuel Variables, Climate Fields, Ancillary Data and Geostationary FRP observations

