• Meteosat Third Generation (MTG)

• Direct Fire Emissions using FREM

- Geostationary Network
- High Latitude (Polar Orbiting)
- Sentinel-3 Active Fire
- Example of Air Quality Model Evaluation

M. Wooster, W. Xu, W. Maslanka, J. He, Z. Liu, M. Grosvenor, T. Wainright, G. Roberts

Meteosat Third Generation

MSG SEVIRI "Natural Colour" Composite (but including 3.8µm band data)

05.08.2023 10:00 UTC

MSG vs MTG Comparison

CURRENT MSG SEVIRI IMAGERY

MTG FCI "Natural Colour" Composite (but including 3.8 and 2.2 µm band data)

05.08.2023 10:00 UTC

Demonstrating FCI's capabilities Observing fires in Portugal Preliminary results

> Fire cores

NEW MTG FCI IMAGERY

Smoke

Preliminary results using FCI commissioning data that are not ready for redistribution or operational use.

FCI FRP-PIXEL First Detection of Athens fire @ 12:00 UTC

OUTO C Local Time GMT+0100 (British Summer Time)												
LATITUDE	LONGITUDE	BRIGHT_TI4	SCAN	TRACK	ACQUIRE_TIME	SATELLITE	INSTRUMENT	CONFIDENCE	VERSION	BRIGHT_TI5	FRP	DAYNIGHT
38.18	23.8	308	616	1267	2024-08-11 13:25:00	Met9	SEVIRI	58	1.0NRT	303	61.4	D
38.21	23.86	334	615	1269	2024-08-11 13:25:00	Met9	SEVIRI	98	1.0NRT	303.3	537.4	D
38.26	23.77	331.4	614	1267	2024-08-11 13:25:00	Met9	SEVIRI	93	1.0NRT	302.7	481.1	D
38.26	23.81	335.4	614	1268	2024-08-11 13:25:00	Met9	SEVIRI	86	1.0NRT	302.7	700.3	D
38.22	23.74	321.4	615	1266	2024-08-11 13:40:00	Met9	SEVIRI	73	1.0NRT	299.6	265.4	D
38.21	23.86	335.2	615	1269	2024-08-11 13:55:00	Met9	SEVIRI	98	1.0NRT	307.3	735.2	D
FILTER B	Y nothing		AI	l fields	~	All dates	~					

FCI detected Fire @ 12:00 UTC @ 40 MW

- VIIRS confirmed @ 12:06 UTC @ 34 MW
- SEVIRI detected Fire @ 13:25 UTC Saturated

FCI FRP-PIXEL Prototype @ LSA_SAF

MTG FCI MWIR-LWIR Brightness. Temp. Difference (1 km Data)

癸 #1 Scroll (0.022...

Southern Africa 13:00 UTC; 31 July 2024

MTG FCI-derived FRP Diurnal Cycle vs MSG

Direct Fire Emission Estimation from Geostationary Observations

Estimating Fire Emissions

Different ways of estimating fire activity and associated emissions of gases and aerosols using Earth Observation.

• Only way to effectively get information at regional / national / global scales consistently, and at temporal resolutions needed

Fire Radiative Energy EMissions (FREM) Method

Emissions are derived from coefficients linking FRE directly to amount of atmospheric species (TPM and CO) for different biomes - Nguyen et al. (2023)

VIIRS RGB

> Applied to LSA SAF FRP-PIXEL record (2004-2019) used over Africa

Very close to GFED4.1s - derived using completely different datasets and methods

"FREM" Smoke Emissions Products from MSG

Extending to GOES and Himawari Satellites

GOES

FEER-Equivalent FREM Coefficients Fire Emissions (Sept. 2024)

Himawari

FEER-Equivalent FREM Coefficients

Fire Emissions (Mar. 2025)

High Latitude FREM

FREM Approach: Method and Data

Fire Radiative Energy Emissions (FREM)

- Based on Fire Radiative Power (FRP) timeseries
- v1: relates Geostationary FRE to TPM (Africa)
- v2: method improved, also relates Geostationary FRE to CO (Africa)

Adapted FREM (Latitudes ≥ 60°N)

• Swap Geostationary FRE for Polar Orbiter FRP

Orbital convergence provides many samples per day

Data Used

VIIRS (S-NPP) *Plume and Fire Identification*

Sentinel-5P Carbon Monoxide Observations

GFAS v1.4 MODIS + VIIRS Hourly FRP

CCI 2018 Land Cover + Köppen-Geiger classes Aggregated Biomes

Will Maslanka | William.maslanka@kcl.ac.uk | NCEO King's College London

High Latitude FREM Emission Coefficients

Four biomes across the combined ROIs (covers 95% of FL Emissions)

- Deciduous Needleleaf Forest (DecNeedle)
- Evergreen Needleleaf Forests (EGNeedle)

• Shrublands

Plots show relation between total CO emission from a fire (y-axis) and Fire Radiative Energy (x-axis).

Will Maslanka | William.maslanka@kcl.ac.uk | NCEO King's College London

Grasslands

Fire Emissions Inventory Intercomparison

EGNeedle

- Alaska / Canada Dominated
- ≈ 85% w.r.t. GFED
- ≈ 118% w.r.t. GFAS
- ≈ 117% w.r.t. FEER

Shrubland

- Alaska / East Siberia
- ≈ 64% w.r.t. GFED
- ≈ 70% w.r.t. GFAS
- ≈ 77% w.r.t. FEER

Carbon Emission Inventory Comparison

51 Tg

50 Tg

31 Tg

31 Tg

14 Tg

8 Tg

3 Tg

2 Tg

GFAS v1.2

GFED

Sentinel-3 SLSTR FRP Product

Comparison to MODIS Terra

Total Daily FRP (a) (b) 10^{6} 90 entage Daily Global FRP 60 50 é - 04 - 05 - 05 - 05 10^{4} 10 2021-03 2021-05 2021-07 2021-09 2021-11 2022-01 2022-03 2021-03 (c) (d) 90 08 ntage 10 Daily Global Fire Count 104 60 50 nulativ 30 JD 20 10 2021-03 2021-05 2021-07 2021-09 2021-11 2022-01 2022-03 2021-03 **Total AF Pixel Count**

S3A S3B MODIS 2021-05 2021-07 2021-09 2021-11 2022-01 2022-03 S3A S3B MODIS 2021-05 2021-07 2021-09 2021-11 2022-01 2022-03

Cumulative FRP

Cumulative AF Pixel Count

- NTC night-time product available since early 2020
- NTC daytime product available since early 2022

PM2.5 Intercomparisons of Measurement and Models

Mean CAMS Near Real Time Forecasts against Mean Purple Air Network Observations of PM2.5 (µg/m3) During the 2024 Fire Season

