An integrated system for Early detection and suppression of bushfires

Prof. Marta YEBRA Director Bushfire Research Centre of Excellence

The Gospers Mountain fire

The largest bushfire in Australia (>1M ha)

@ABC, 2020

Fire detection: a tricky scenario

- How can we improve on existing detection capabilities?
 - Particularly in remote areas
 - Or when resources are already stretched

Evaluation

- Quantify detection efficacy of:
 - Satellite
 - Scout drones
 - Tower camera AI smoke image detection
 - IoT terrestrial sensor networks

- Using several experimental methods
 - Artificial signals
 - Experimental burns
 - Planned burns
 - Unplanned fires

Artificial fire signals

Experimental Burns

Planned burns (ACT PCS)

Layers of Technology for ignition detection

- Which strikes caused an ignition?
- How accurately are the strikes geolocated?

Radom forest model for Lightning ignitions

- Dry lightning (temperature and humidity at levels above the surface and between 1,000 and 500 hPa)
- Climate and vegetation types
- o Temperature and humidity at the time of ignition
- DEM and soil moisture

	Accuracy	Precision	Recall	AUC
Validation set	0.88	0.89	0.84	0.95
Test set	0.76	0.80	0.66	0.85

Layers of Technology for ignition detection

Satellite

- Is the fire big enough to see?
- Is the satellite sensitive to changes in fuel condition?
- Is there cloud or smoke?
- When does it overpass?

Current satellite capability for early fire detection

• ~ 5,000 fires in NSW where we know the date of detection (and likely ignition)

Bushfire Research

• Effects of temporal and spatial resolution but also algorithms

Size of detected fires

Wilson et al. In preparation

Fuel Moisture Content monitoring

	Contents lists available at ScienceDirect	R _c
	Remote Sensing of Environment	
LSEVIER	journal homepage: www.elsevier.com/locate/rse	

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Sub-daily live fuel moisture content estimation from Himawari-8 data

Xingwen Quan^{a, b, *}, Rui Chen^a, Marta Yebra^{c, d}, David Riaño^{e, f}, Víctor Resco de Dios^{g, h}, Xing Liⁱ, Binbin He^a, Rachael H. Nolan^J, Anne Griebel^{j, k}, Matthias M. Boer^J, Yuanqi Sun^a

scientific data

Examining the Transferability of Remote-Sensing-Based Models of Live Fuel Moisture Content for Predicting Wildfire Characteristics

Edna Guk¹⁰, Avi Bar-Massada¹⁰, Marta Yebra¹⁰, Gianluca Scortechini¹⁰, and Noam Levin¹⁰

OPEN Globe-LFMC 2.0, an enhanced and updated dataset for live fuel moisture content research Marta Yebra et al."

(presenting at the EARSEL)

A Review of Leaf-Level Flammability Traits in Eucalypt Trees

RESEARCH ARTICLE

liobal Change Biology WILEY

Tree species explain only half of explained spatial variability in plant water sensitivity

Alexandra G. Konings¹ | Krishna Rao^{1,2} | Erica L. McCormick¹ | Anna T. Trugman³ | A. Park Williams⁴ | Noah S. Diffenbaugh¹ | Marta Yebra^{5,6} | Meng Zhao⁷

FMC at global and continental scale

Working on a literature review and comparison paper

Product	Region	Sensors	Res.	Approach	
Quan et al., 2021	Global	Optical	500 m	Physical algorithm	
Forkel et al., 2023	Global	Optical + Pas. MW	0.25 °	Random forests	
Miller et al., 2023	CONUS	Optical	500 m	Neural networks	
McCandless et al., 2020	CONUS	Optical	1 km	Random forests	
Rao et al., 2020	West US	Optical + Act. MW	250 m	Neural networks	
Chaparro et al., 2024	West US	Optical + LIDAR + Pas.	0.25°	Semi-physical algorithm	
		MW + Act. MW			
Yebra et al., 2018	Australia	Optical	500 m	Physical algorithm	
Cunill et al., 2021	Mediterranean Basin	Optical	500 m	Random forests	

Chaparro et al., In Preparation

Tailored EO Mission to monitor fire fuel Flammability

EUCFlamm 1.0 (presenting at the EARSEL)

Indigenous pathways to EO technologies

- Interface Aboriginal knowledge with modern scientific research.
- Use satellite data to create "life maps" for reading landscapes and fuel flammability.
- Cross-validate traditional assessments with satellite-derived data on vegetation moisture.

- Are they close enough to the fire?
- Are they downwind from the fire?

IoT Ground Sensor Networks

- Position relative to wind direction strongly affects signal strength
- Smoke dispersal modelling to quantify how quickly sensor in different locations might affect fire detection

Layers of Technology for ignition detection

- Is the smoke too far away?
- Is there occlusion/blind spots?
- Is there enough light to see smoke?
- Is it a false positive?

Camera-based smoke detection

(((•)))

Camera-based fire detection

- Successfully built detection/segmentation models to detect fires
- Need to generate a publicly available dataset of smoke-detecting camera imagery (AusSmoke project- under funding application)

Yan et al. 2022

Camera-based fire detection

Wilson et al. In preparation

Layers of Technology for ignition detection

- How close do we need to fly to the fire?
- What if there is a dense canopy?

Scout drones

- Ongoing development of capability of Ottano platform working with Carbonix.
- Evaluation of thermal SIYI ZT30 camera and gimbal in flight conditions for small fires and heaters
- Development of manuals and procedures for EVLOS
- Obtained accreditation with CASA for EVLOS and BVLOS

Carbonix Ottano drone during tech demo in Oct.

Scout drones

Strategic roadmap for drone implementation

- Guide Australian federal decision-makers in strengthening national capabilities across all phases of bushfire management: prevention, preparedness, response, and recovery → Recommendations
- Collaborating with key stakeholders to develop and rigorously test an implementation roadmap

Australian Government Department of Infrastructure, Transport,

https://www.drones.gov.au/drones-and-bushfire-capability

Bushfire

Wildfire Prediction at global scale

Marquez-Torres et al, Under review in Global Change Biology. Al in Wildfire Prediction: A Global High-Resolution Approach.

Thank you