Agricultural Fire Emissions Inferred from VIIRS Are Much Higher Than Current Bottom-up Inventories - Case study in China

Tianran Zhang, Martin Wooster & Weidong Xu

National Centre for Earth Observation

NATURAL ENVIRONMENT RESEARCH COUNCIL

University of London

2nd GWIS and GOFC-GOLD Fire IT meeting

Agricultural Fire Emissions in China

Current Fire Emissions Inventories: GFED vs GFAS

Global Fire Emissions Database (GFED) [based on EO-burned area measures] Global Fire Assimilation System (GFAS) [based on EO-derived FRP measures]

$R = P \times N \times D \times B \times F$

Table 2

Regional open burning ratio of agricultural wastes in China in 2006.^a

Zone	Provinces	Open burning ratio	Standard deviation
1	Yunnan, Guizhou, Jiangxi,	10.7%	3.34
	Hubei, Sichuan, Chongqing		
2	Heilongjiang, Jilin, Liaoning,	11.8%	3.94
	Inner Mongolia		
3	Xinjiang, Xizang, Qinghai,	16.4%	6.97
	Gansu, Ningxia		
4	Shanxi, Henan, Shanaxi, Hebei,	16.5%	2.24
	Beijing, Tianjin, Shandong		
5	Jiangsu, Anhui, Zhejiang,	31.9%	5.07
	Shanghai, Fujian		
6	Hunan, Guangdong, Guangxi, Hainan	32.9%	6.63

^a Wang and Zhang, 2008.

Crop Yield

Residue

Emissions

Qiu et al., 2016; EST

VIIRS

Next Generation Environmental **Monitoring from Space**

Onboard the Suomi NPP Satellite, VIIRS provides superior imagery and data for next generation civil and military weather, climate and disaster monitoring.

> Sun-synchronous polar orbit

Suomi NPP Satellite

Click an icon below for a larger image

2X longer operational lifetime Calibrated low light level

imagery

375 meter visible-infrared imagery at nadir

Cloud

properties

VIIRS instrument

Ocean color Sea surface temperature

Ocean currents

Aerosol characteristics

> Images taken by VIIRS on Nov. 21, 2011

Vegetation index Fire detection and monitoring

Land and ice

temperature

From http://www.nasa.gov/

Benefit of VIIRS-IM FRP

Zhang et al., (2017) RSE

Issues: False fire detection caused by surface sun glints and/or high temperature roofs that are sub-pixel at scale of VIIRS.

Solution: 30 m land cover mask (% agricultural). Persistent hotspot mask.

🗴 VIIRS-IM vs MODIS: Eastern China & India

VIIRS-IM FRP based FRE/Emission Estimates

24 hrs of imagery (every 10 minutes)

False detection of active fires by MODIS. Superimposed on Sentinel-2 true colour imagery.

Small Fire Boosting of GFEDv4.1s

Conclusion:

The attempt (in GFED4.1s) at adjusting emissions for the impact of "small" fires introduces significant errors into this very widely used inventory.

Other characteristics detected from EO

Other characteristics detected from EO

⇒ Dry Matter Burned (DMB) is inversely correlated with GDP per capita ($r^2 = 0.72$)

✤ Geographical shift might also be linked with fire prohibition policies: greater distance, less resources

- A High Spatio-temporal Resolution Agricultural Burning Smoke Emissions Product in Eastern China.
- The attempt (in GFED4.1s) at adjusting emissions for the impact of "small" fires introduces significant errors into this very widely used inventory.
- The newly identified winter burning season (Nov-Dec) is likely the caused by the delayed burning of parts of autumn harvest due to local fire prohibition policies.