20th-23rd November

GWIS and GOFC Fire IT meeting

LSA-SAF SEVIRI FRP-PIXEL product

Geostationary active fire dataset (2004–present)

- Atm. corrected FRP over Earth disc
 - 3km spatial res. & 15min temporal res.
- NRT emissions est. (e.g. Copernicus Global Fire Assimilation System; GFAS, Kaiser et al., 2012, ACP)

MODIS true colour image (a) and GFAS AOT emissions (blue) est. using SEVIRI FRP (red)

Roberts et al., (2015) ACP

Diurnal Cycle of Fire Activity

Ratio between SEVIRI FRP measured at MODIS overpass times and SEVIRI FRP measured over the full diurnal cycle

- Temporal frequency key advantage of geostationary sensors
- Vegetation characteristics play a role in diurnal dynamics of fire activity

Africa : BB Temporal Dynamics

- Africa is large continental BB emissions source
- Strong seasonal and inter-annual variability

Burned area activity :

- Broadly consistent in SHA
- General decrease in NHA
 - Increased agriculture (Andela and van der Werf, 2016)

FRE & fuel consumption

- more variable in NHA
- slight increase in SHA

MCD64 Burned Area

SEVIRI Fire Radiative Energy

([T]) 3A

FRE-derived Fuel Consumption and Vegetation Productivity: Methodology

Vegetation Productivity

- MCD64 burned area product (Giglio et al., 2013)
 - Define burned area 'clusters'
 - Identify areas which burn in successive years
 - Integrate 500m MODIS PSNnet
 - Date of last BA DOY (previous year) → date of first BA detection (current year)

SEVIRI FRP

- Integrate FRP over burned area
 - date of first BA detection → date of last BA detection (current year)
- Est. FRE and total fuel consumption
 - FRP conversion factor 0.368 (Wooster et al., 2005)

Fuel Consumption (FC) and Productivity

Fuel Consumption Estimation : Methodology

- **I** Fuel Consumption (kg/m²) estimation :
 - MCD64 burned area product (Giglio et al., 2013, Biogeosciences)
 - Daily resolution @ 500m
 - Remapped to SEVIRI grid
 - SEVIRI FRP (MW)

- Assumes FRP +/- 7 days of a MODIS burn detection is same fire
 - Integrate to est. FRE
 - Est. fuel consumption per pixel
- Calculate fuel consumption per 0.25°

FRE-derived Fuel Consumption (FC)

FRE-derived Fuel Consumption (FC)

- **FRE-derived FC**
 - most reliable in regions of :
 - high fuel loads
 - larger fires

- **FRE-derived FC effected by :**
 - Sensor (e.g. SEVIRI pixel area, PSF\FIR filter, temporal sampling)
 - Environment characteristics (e.g. fire size, intensity, fuel moisture content, cloud\smoke obscuration)
 - Canopy structure

Impact of Canopy Structure

- DART model simulates radiative transfer in visible-thermal wavelengths (Gastellu-Etchegorry et al., 1996)
 - assess impact of :
 - canopy cover
 - LAI
- □ Scene simulated in MWIR :
 - uniform (1000K) heat source
 - canopy simulated using a turbid tree canopy
 - randomly distributed in scene
 - %canopy cover varied between 7-96%

Impact of Canopy Structure

Impact of Canopy Structure

□ Correcting SEVIRI FRP for impact of canopy cover and LAI

14-17% increase

Most fire activity in Africa occurs in <40% cover
Correction for canopy cover \ LAI assumes :

- fire occurs under canopy
- uniform dist. of %cover within pixel
- nadir vzen correction
- LAI (upper and lower surface fuel)

Conclusion

□ FRP-derived FC underestimated

- more variable in the northern hemisphere
- better agreement in southern hemisphere
- doesn't account for CC, respiration

□ FRE-derived FC underestimation for num. reasons

DART simulations indicate large reduction in sensor FRP with
>% cover

□ Correcting for canopy cover and LAI results in a ~15% increase in SEVIRI FRP over Africa