International Workshop on Land Use/Cover Changes and Air Pollution in Asia

Air Pollution Management System in Vietnam

NGUYEN THI NHAT THANH, BUI QUANG HUNG, LE THANH HA, NGUYEN NAM HOANG, NGUYEN HAI CHAU, NGUYEN THANH THUY, PHAM VAN HA, LUU VIET HUNG, MAN DUC CHUC, PHAM NGOC HAI, PHAM HUU BANG, LE XUAN THANH PHAN VAN THANH, DO XUAN TU

> CENTER OF MULTIDISCIPLINARY INTEGRATED TECHNOLOGIES FOR FIELD MONITORING UNIVERSITY OF ENGINEERING AND TECHNOLOGY, VIETNAM NATIONAL UNIVERSITY HANOI

Bogor, Indonesia - August 4th - 7th, 2015

Introduction

Objectives and Approaches

• PM Concentration Mapping

Air Pollution Management System

Introduction

Objectives and Approaches

• PM Concentration Mapping

• Air Pollution Management System

Introduction

Objectives and Approaches

• PM Concentration Mapping

• Air Pollution Management System

Introduction

Objectives and Approaches

PM Concentration Mapping

• Air Pollution Management System

Vietnam

12

MODIS PM2.5 10X10 KM* NPP PM2.5 6X6 KM

* Nguyen et al., "Particulate Matter Concentration Mapping from MODIS Satellite Data: A Vietnamese Case Study", 2015, ERL, In Press.

meteorology stations

Vietnam is nearly 332,210 km² and extends from (8°N, 102°E) to (23°N, 120°E) with the population of 90.5 million as of 2014.

 7 climatology regions (NW, NE, RRD, NCC, SCC, CH and SE)

Datasets

			(14)		
Types	Data	Description	Start	End	Purpose of use
		Terra, Aerosol, 10x10			MODELING, INPUT FOR
	MOD04	km	01/2009	09/2014	EACH PM MAP
		Aqua, Aerosol, 10x10			MODELING, INPUT FOR
	MYD04	km	01/2009	09/2014	EACH PM MAP
		Terra, Meteorology,			MODELING, INPUT FOR
	MOD07	5x5km	01/2009	09/2014	EACH PM MAP
		Terra, Meteorology,			MODELING, INPUT FOR
Sat.	MYD07	5x5km	01/2009	09/2014	EACH PM MAP
		CEM – VEA			
		PT HL - NW			
					MODELING (PT, HN, H,
		HN – RRD			DN)
		\mathbf{H} – NCC,			Ind VALIDATION (III
			10/0010	10/0014	IIId. VALIDATION (HL,
	PM2.5	$\mathbf{DN}, \mathbf{NH} = 500$	12/2010	12/2014	KH)
	Temp, KH,		,	,	
	RF	NCHMF, 98 stations	1/2004	2/2014	MODELING
Insitu	AOT	AERONET, 7 stations	3/2013	6/2013	VALIDATION

Model Evaluation

16

$$\begin{split} PM2.5_{t-MOD} &= \mathrm{f}(AOT_{t-MOD}, Temp_{mr}) \\ PM2.5_{t-MYD} &= \mathrm{f}(AOT_{t-MYD}, Temp_{mr}) \end{split}$$

	MOD		MYD				
#Sample	r ²	RMSE (µg/m ³)	RE (%)	#Sample	r ²	RMSE (µg/m ³)	RE (%)
274	0.602	8.527	33.348	385	0.577	8.777	53.353

Validation

1. Overall assessment

(Boylan and Russell 2006)

- Mean Fractional Bias (MFB $\leq \pm$ 30% goal: $\leq \pm$ 60% - criteria)

- Mean Fractional Error (MFE $\leq \pm 50\%$ goal: $\leq \pm 75\%$ - criteria)

	#Images	#Samples	\mathbf{r}^2	RMSE (µg/m3)	RE (%)	MFB (%)	MFE (%)
MOD	85	189	0.427	21.709	39.957	0.491	34.954
MYD	43	96	0.337	17.188	39.458	3.639	34.799
Total	128	285	0.411	20.299	39.789	1.552	34.902

Overall validation of satellite-derived PM_{2.5} maps over Phu Tho, Ha Noi, Hue and Da Nang in NE, RRD, NCC and SCC regions, respectively. Results are separated by MOD and MYD datasets and accumulated in total.

Boxplots shows the variation of satellite derived PM2.5 (_Sat) and ground based PM2.5 (_Grd) from 2010 – 2014 at Phu Tho, Ha Noi, Hue and Da Nang stations. The means values are shown as the thick solid line in the plots.

Validation

18

2. Independent validation

Station	#Samples	r ²	RMSE (µg/m ³)	RE (%)	MFB (%)	MFE (%)	
Ha Long	40	0.455	21.512	45.236	-2.975	38.695	
Khanh Hoa	45	0.444	8.551	46.446	25.988	33.960	

Independent validation of satellite-derived $PM_{2.5}$ and ground-based $PM_{2.5}$ at Ha Long and Khanh Hoa stations.

21

Introduction

• Objectives and Approaches

• PM Concentration Mapping

Air Pollution Management System

29

Introduction

Objectives and Approaches

• PM Concentration Mapping

• Air Pollution Management System

Conclusion

PM estimation at regional scale (Vietnam)

- PM2.5 maps at 10 km using MODIS from Dec. 2010 Sep. 2014
- Modeling and validation were carried out for NE, RRD, NCC and SCC and obtained promising results

Air Pollution Management system (APOM)

- Online monitoring and warning system
- Automatic data processing
- Supporting system (data, user ...) administration
- Supporting user interface

Open issues

- Frequency of satellite-derived MODIS PM2.5 map is low (effect of cloud)
- Validation in other regions (i.e.: NW, CH, SE)
- Statistics approach (data-driven approach) vs. other approaches (model-driven approaches)
- Model performance's improvement.

Acknowledgement

• This research was possible due to the funds received from project "Air pollution monitoring and warning system", QGTD.13.27 from Vietnam National University, Hanoi.

