FRP Emissions

Johannes W. Kaiser

European Centre for Medium-range Weather Forecasts, King's College London, Max-Planck-Institute for Chemistry

Thanks to Niels Andela, Angelika Heil, Ronan Paugam, Martin G Schultz, Guido R. van der Werf, Martin J. Wooster and Samuel Remy!

LONDO

CUS

GOFC-Gold Fire IT Wageningen, April 2013

European Commission

Gmes

Bottom-Up Estimation of Fire Emissions

Why Fire Radiative Power (FRP)?

Atmospheric CO Concentration and Fire Observations in Northeast India

Advantages of FRP

- real time availability, low detection threshold (compared to burnt area)
- use quantitative observations, avoid assumptions on
 - available fuel load
 - combustion completeness
 - proven suitability for Air Quality applications

(compared to fire counts)

Modelled AOD of Greek Fire Plumes, August 2007

Emissions calculated from Fire Radiative Power observed by SEVIRI on Meteosat.

Emission factors from *Andreae* & *Merlet 2001* and *Ichoku & Kaufman* 2005.

Run at 25km global resolution, which is typical for regional models.

Comparison of model (eyvo) & MODIS AOT at 550nm and L1.5 Aeronet AOT at FC Total FC Dust FC BC+OM Aeronet Total Aeronet Fine MODIS Total

5

Global Fire Assimilation System (GFASv1.0)

- 1. FRP observation input:
 - MODIS Aqua/Terra
- 2. gridding on global 0.5/0.1 deg grid
 - including FRP ≥ 0 corrects partial cloud cover
- 3. merging in 1-day slots
- 4. removal of spurious observations, e.g. gas flares
- 5. quality control
- 6. observation gap filling with Kalman filter, assuming
 - variance according to representativity error
 - errors spatially uncorrelated
 - fire persistence
- 7. fire type-dependent conversion to combustion rate
- 8. emission calculation
 - 40 gaseous & particulate species

Alberta, Canada, May 2010 (edmontonjournal.com)

FRP conversion factor analysis against GFEDv3

Conversion factor depends on dominant fire type!

(adapted from Heil et al., ECMWF TM628, 2010)

Fig. 5. Average distribution of carbon combustion [g(C) a⁻¹ m⁻²] during 2003–2008 in GFED3.1 (top) and GFASv1.0 (bottom). *(Kaiser et al. 2*

Black Carbon Cross-validation

• **GFASv1.0** (with aerosol enhancement) compares well with NASA's **QFEDv2.2**.

(courtesy A. da Silva)

Two approaches, with consistent results:

Ichoku, da Silva, Sofiev

- scale FRP empirically to emissions as observed in plumes
 - geographical dependence
- possibly extend to other species with relative emission factors

Wooster, Kaiser

- scale FRP to DM as prescribed in GFED
- fire type dependence
- adjust single species emission factors to atmospheric observations

 Without CO2 observations, the parameters remain underdetermined ⁽³⁾

Monthly C emission up to September 2011

Key Features

satellite-based FRP assimilation :

- global coverage
- NRT availability
- daily resolution (tests: hourly)
- similar maturity as BA approach

MACC-GFAS:

- publicly available in several data servers
- various product formats:
 - GRIB
 - NetCDF
 - GIF map
 - PNG spaghetti plot
 - KML

http://gmes-atmosphere.eu/fire

Real-time Supply Chain

Data providers: (acquired by OBS)

- NASA: MODIS FRP
- EUMETSAT LSASAF: SEVIRI FRP
 - UCAR: GOES-E/-W rad.

ECMWF: met. forecasts

MACC FRP processing:

KCL (IM): GOES-E/-W FRP

MACC GFAS processing:

- GFAS @ ECMWF
 - assimilated FRP
 - combustion rate
 - emissions
 - (injection heights)

archives @ ECMWF:

- ECFS
- MARS

archive @ FZJ:

OGC web server

GEIA archive:

OGC web server

USERS

Conclusions

- MACC GFAS is producing daily biomass burning estimates
 - for 40 smoke constituents
 - in real time
 - publicly available
- All global MACC systems consistently use GFAS emissions.
- More and more regional air quality systems use GFAS.
- GFAS compares well with other inventories.
- Feedback from atmospheric validation is becoming more widely available.
- Many uncertainties remain. Current developments focus on
 - plume rise model
 - merging of geostationary FRP observations
 - 5-day fire evolution prediction
 - improved emission factor formulation
- http://gmes-atmosphere.eu/fire

FIR Developments: FRP merging of GEO and LEO observations

- scientifically not solved anywhere
- We follow two approaches
 - based on GFAS-gridded observations
 - characterisation of bias (GEO FRP, view angle, local time)
 - prediction of bias from previous co-located observations

conditional PDF (Jun2010-Jul2012)

GFAS Emissions in MACC Systems

- global production
 - aerosols
 - reactive gases
 - greenhouse gases
- reanalysis (2009-10)
- CO-tracer forecasts
- EURAD regional forecasts

FIR Developments: Dynamic Emission factors

Top: partition fuel sources contributing to emissions (shown here the fraction wood)

Each fuel source gets a MCE range based on literature (MCE = Modified Combustion Efficiency = CO2 / (CO+CO2))

Meteorology used to scale within the range

MCE relates (reasonably) well with EFs of other trace gases and aerosols

Middle: emissions difference between MCE run and standard GFED run (Gg CO / year)

Bottom: atmospheric concentration (ppb / month) for lower atmosphere (up to 800 hPa)

Next step: build into GFAS

Plume Rise Model Development

Objective: Improvement and Validation of a new PRM based on the Freitas Model

- MISR reference dataset of observed FRP and plume top height created (N America)
- PRM by Freitas et al. 2007 implemented and optimised
 - input data stream from ECMWF operational forecasts
- Sofiev et al. 2012 implemented
- PRMv1 delivered to ECMWF
 - for implementation in GFAS

GFAS test version with 1 hour time resolution implemented

- assimilation of GOES FRP products
- 1-hour forecast based on corresponding 5 hour window of past 24 hours
- provided for SAMBBA campaign in real time
- evaluation to follow

Key Features

satellite-based FRP assimilation :

- global coverage
- NRT availability
- daily resolution (tests: hourly)
- well documented
- publicly available in several data servers
- various product formats:
 - GRIB
 - NetCDF
 - GIF map
 - PNG spaghetti plot
 - KML

http://gmes-atmosphere.eu/fire

2012 is most interesting: Siberia, Western US & Australia!

29

2010 fires over Russia

Fire radiative power from MODIS, east of Moscow (50-60N, 35-

User statistics: GEIA ECCAD

- 1. Patricia Oliva, Universidad de Alcala, Spain
- 2. Giuseppe Baldassarre, Istanbul Technical University, Turkey
- 3. Taichu Tanaka, Meteorological Research Institute, Japan Meteorological Agency, Japan
- 4. Koizumi Satoru, Meteorological Research Institute, Japan Meteorological Agency, Japan
- 5. Kristofer Lasko, University of Maryland Department of Geography, Laboratory of Global Remote Sensing Studies, United States
- 6. Piyush Bhardwaj , Aryabhatta Research Institute of Observational Sciences, India
- 7. Rodriguez Armando, Fundacion Amigos de la Naturaleza, Bolivia